
Petri Net Algorithms in the Theory of Matrix GrammarsDirk Hauschildt and Matthias JantzenFB Informatik, Universit�at HamburgVogt-K�olln-Stra�e 30, 22527 Hamburgfdirk,jantzeng@informatik.uni-hamburg.deAbstractThis paper shows that the languages over a one-letter alphabet generated by acontext-free matrix grammar are always regular. Moreover we give a decision proce-dure for the question of whether a context-free matrix language is �nite. Hereby westrengthen a result of [Mk 92] and settle a number of open questions in [DP 89]. Bothresults are obtained by a reduction to Petri net problems.1 IntroductionPetri nets and vector addition systems are di�erent representations of the same construct.While their notation as nets emphasizes their role as a speci�cation and analysis tool fordistributed systems, their alternative de�nition as vector replacement systems illustratestheir importance in the theory of formal languages. Here they are regarded as semi-Thue systems for commutative monoids over a �nite alphabet in contrast to the usuallyconsidered free monoid. The alphabet is represented in the set of places, the transitionsplay the role of grammatical rules, and the actually derived sentential form is encoded inthe marking.Additional features of grammars, such as the distinction between intermediate senten-tial forms and actual elements of the generated language, do not occur in the de�nitionsof the nets, but can be implemented by considering only those elements of the reachabilityset of which submarkings on certain places have a �xed, predetermined value.Therefore, Petri net theory is applicable to certain problems in formal language theoryin which� the ordering of the letters in words of the generated language is irrelevant, and� the ordering of the letters within sentential forms does not in
uence the furtherderivation (except for the ordering of the result).The �rst condition is ful�lled if the alphabet contains only one letter or for problemslike emptiness or �niteness of a language. The second requirement is a characterization ofcontext-free grammars.Petri net theory is also applicable to extensions of ordinary grammars such as matrixgrammars and random context grammars because their additional requirements can beeasily expressed in terms of the nets. 1



We will give two examples of this method by solving two problems about matrixgrammars stated as open in [DP 89].� Firstly we show that languages of a matrix grammar or a random context grammarover fag are always regular.� Secondly we give a decision procedure for the question of whether the language of amatrix grammar or of a random context grammar is �nite.For this purpose we make use of the semilinearity algorithm presented in [Ha 90].Given a speci�cation of a portion of the reachability set of a net, this algorithm decideswhether the speci�ed set is semilinear. It produces a semilinear representation of the setin that case and two close estimates otherwise.Section 2 gives the net theoretical de�nitions needed in the sequel. The semilinearityalgorithm, on which our results are based, is introduced in Section 3. The next sectiondevelopes some applications of the algorithm in the �eld of Petri nets. Our two mainresults mentioned above are presented in Section 5. Finally, Section 6 contains a moredetailed list of open problems which have been solved with our methods.2 De�nitions2.1 Petri NetsA Petri net (more exactly: place/transition net) N = (P; T; F; B) consists of the set Pof places, the set T of transitions, and two weight functionsF : T ! INP ;B : T ! INP :P and T are assumed to be �nite and disjoint.Markings are functions m : P 7! IN (usually written as vectors in INP ). Sometimes wewill associate an initial marking m0 and/or a �nal marking mf with a net. This is doneby adding m0 and/or mf to the above 4-tuple.F is called the forward incidence function. F (t) describes how many tokens aremoved from the places to the transition t when t �res. Conversely, the backward in-cidence function B determines the number of tokens returned by a transition. Hence,� := B �F describes the change of the marking produced by the �ring of a transition. Itis called the incidence function of the net. Similar to the vector notation for markings,F , B, and � are usually written as matrices.A transition t is enabled in the marking m if and only if F (t) � m, this is denotedby m (ti). The �ring of a transition t transforms m into m0 = m + �(t) (in symbolsm (ti m0). This de�nition is recursively extended to sequences of transitions: A transitionsequence w = t1 � � � tn 2 T � is enabled in m i� m (t1i and t2 � � � tn is enabled in m+�(t1).Then m (wi m+ �(w). Moreover, we assume m (�im for arbitrary markings m of INP .2



2.2 (Semi-)Linear SetsA constant c and a set of periods X = fx1; : : : ; xng, each of which is an element of 0ZZ0A,for some �nite set A, de�nes the linear setL := N (c ; X) := �c+X � r ��� r 2 INX	:The information encoded in X is twofold: Considered as a set, it de�nes the basicperiods of L, and considered as a mapping, it describes which periods can be added toelements of L without leaving the set. The image X � r of the homomorphic mappingX : INX 7! 0ZZ0A is the set N (0 ; X) of linear combinations of X . If rx 6= 0 for all x 2 X wecall X � r a proper linear combination of X .A semilinear set SL is the union of �nitely many linear sets. If the sets of periods ofall linear components of SL coincide, i.e., if SL = S �N (c ; X) ��� c 2 C	 for a �xed set X ,we characterize it more shortly by N (C ; X).The Parikh mapping  : A� ! INA relates every word w 2 A to the vector x 2 INAfor which xa contains the number of occurrences of a in w.2.3 The Reachability RelationThe reachability relation RN of a Petri net N is de�ned byRN := �(a; b) 2 INP � INP �� 9w 2 T � such that a (wi b 	 :It is often useful to extend this relation by some information about the paths connectinga and b. Therefore we de�ne the extended reachability relationERN := n(a; b; f) 2 INP � INP � INT ��� 9w 2 T � such that a (wi b and  (w) = f o :The index is omitted if the net is evident from the context.We will also consider the set of paths leading from a certain �xed initial marking to a�xed �nal marking. Given a homomorphism h : T � 7! A�, where A is a �nite alphabet,we de�ne the labelled terminal Petri net language L (N; h;m0; mf ) byL (N; h;m0; mf) := fh(w) 2 A� jm0 (wi mfg:3 The Semilinearity AlgorithmIn order to formulate queries about portions of the reachability set, a kind of speci�ca-tion language for reachability sets was introduced in [Ha 90]. It contains semilinearityproblems of the form P = (N;L; �) where(i) N is a Petri net,(ii) L � INP � INP � INT de�nes the portion of the reachability relation to be dealt with,and(iii) the homomorphism � : INP � INP � INT ! V selects the type of information to becomputed. Usually, � is just a projection.3



The set of interest speci�ed by P is SOLP := �(ERN \ L).The ordinary reachability set of N from a given initial marking m0 can be speci�ed bysetting L to fm0g � INP � INT and �(a; b; f) := b.Given such a triplet P , the semilinearity algorithm presented in [Ha 90] computestwo semilinear sets LBP and UBP withLBP � SOLP � UBPsuch that dim (UB 0P n LB 0P) � dim (UBP n LBP)holds for every pair LB 0, UB 0 of semilinear sets with LB 0 � SOLP � UB 0. This assertionimplies LBP = SOLP = UBP for the case that SOLP itself is semilinear.This goal is achieved by iteratively computing sets �P of so-called MGTS's (markedgraph transition sequences) each of which describes a portion of SOLP . These structuresare adopted from similar constructs used in algorithms for the reachability problem: givena net N and two markings m0, mf , mf is reachable from m0. An MGTS U is essentiallythe same as a regular constraint graph with a consistent labelling in [Ma 84] and still verysimilar to a GVASS satisfying � in [Ko 82]. The name MGTS itself �rstly occurred in (apredecessor of) [La 88]. In fact, every MGTS computed in the semilinearity algorithm isthe result of an invocation of the reachability algorithm.The exact structure of an MGTS is not important for our purposes and will not bediscussed here. With every MGTS U we can associate a set SOLU containing the elementsof SOLP described by U . Unfortunately, no method to characterize SOLU in a moree�ective way than by giving U itself is known so far. The set �P of MGTS's is a completedescription of SOLP by virtue of the fact that[ fSOLU j U 2 �g = SOLP :The additional information about SOLP contained in � comprises in two statements.Firstly, a �xed, linear upper estimate UBU of SOLU is attached to every U 2 �. The-orem 3.1 below exhibits a method to compute also some lower bounds for SOLU . Byde�ning one of them as LBU we determine two �rst approximationsLB0 := [ fLBU j U 2 �g and UB0 := [ fUBU j U 2 �g (1)of SOLP . The algorithm proceeds by recursively considering the linear components ofUB0 n LB0 as L. This way, it evaluates some closer information about the still undecidedregions. The process halts when no more progress can be made this way.The problem to be solved in every round i of this procedure is to determine the lowerbounds LBU � SOLU for every U 2 �i in such a way that dim (UBinLBi) < dim (Li). Onecan show that UBi�1 and LBi�1 were already optimal (in the sense that the dimension ofthe undecided region is minimal) when such lower bounds cannot be found.Theorem 5.3.7 in [Ha 90] is used to construct linear subsets of some SOLU . Some no-tation introduced in that paper will not be needed for our purposes. To avoid unnecessaryde�nitions we give only a simpli�ed version of that theorem.4



Theorem 3.1 Let U be an MGTS with UBU = N (c ; X). Given a �nite subset C ofUBB and a proper linear combination x of X, one can �nd a constant n � 0 withN �C + n � x ; fxg� � SOLU :Informally, the theorem says that one can shift any element of UBU = N (c ; X) intoSOLU by su�ciently often adding an arbitrary proper linear combination x of X to it.The number n in the lemma can be obtained by determining the necessary number of shiftoperations for every c 2 C and then building the maximum.4 Applications in the Field of Petri NetsThis section extracts the information needed in connection with matrix grammars out ofTheorem 3.1. We consider an MGTS U with UBU = N (c ; X). If the set X of periodsis empty, i.e., if UBU = fcg, the theorem (applied to C := fcg and x := 0) reveals thatc 2 SOLU . With jX j � 1 the theorem shows that SOLU contains in�nitely many elements.This leads to our �rst observation.Corollary 4.1 For a given semilinearity problem P it is decidable whether SOLP is �nite.Proof: We just have to compute the set �P of MGTS's. SOLU is in�nite if and only ifthere is a U 2 � with UBU =: N (c ; X) and jX j � 1.The other case we consider contains semilinearity problems P = (N;L; �) in which �maps L to the set IN of natural numbers. We will show that in this case UB0 n LB0 is�nite, i.e., that the �rst round of the semilinearity algorithm decides x 2 SOLP for allbut �nitely many numbers x. By Equation (1), it su�ces to consider the UBU and LBU ,U 2 �P , separately.Lemma 4.2 Let P = (N;L; �) be a semilinearity problem with � : L ! IN. For everyMGTS U 2 �P there exists a subset LBU of SOLU such that UBU n LBU is �nite.Proof: Let UBU = N (c ; X) and m be a proper linear combination of X . By the choiceof �, m is a natural number. If m = 0, UBU is �nite and the lemma holds trivially.Assuming m � 1, we partition UBU into residue classesRi = fx 2 IN j x � i (mod m)gand select a point ri 2 Ri for every Ri not disjoint to UBU . By applying Theorem 3.1 toC := fri j Ri \UBU 6= ;g and x := m;we obtain a subset LBU := N �C+n�m ; fmg� of SOLU which contains all elements ofUBUwhich are not smaller than a certain bound, namely n �m+maxfri j Ri \UBU 6= ;g. Tosee this we consider the equivalence classes Ri separately. Nothing is to prove if Ri\UBUis empty. Otherwise the subsetN �ri + n �m ; fmg� = fx 2 IN j x � ri +m � n; x � ri (mod m)g5



of LBU contains all su�ciently large elements of Ri.Since the semilinearity algorithm selects all its lower bounds as suggested by the lemma,it nearly has �nished its task after one round. The second round only has to consider theelements of the set di�erence UB0 n LB0 one at a time to determine whether they belongto SOLP . This leads to our second corollary.Corollary 4.3 Let P = (N;L; �) be a semilinearity problem with � : L! IN. Then SOLPis an e�ectively computable semilinear set.A similar approach was applied in [KLM 89] to coverability graphs instead of MGTS's.It was used to show that projections of reachability sets to one coordinate are alwayssemilinear. In Section 5 we make use of the opportunity to restrict our attention to certainlinear subsets of the reachability set. Therefore we cannot apply that result directly.Corollary 4.3 can be easily used to show that the set f jwj j w 2 Lg is semilinearfor every Petri net language L. It is well known that this condition is equivalent for Lbeing regular if the alphabet of L contains only one letter. Hence we obtain the followingcorollary.Corollary 4.4 Let L = L(N; h;m0; mf ) be a Petri net language with h : T � 7! fag�.Then L is an e�ectively computable regular set.5 Applications in the Field of Matrix GrammarsIt is well known that programmed grammars generate the same class of languages asmatrix grammars with appearance checking. Arbitrary matrix grammars with appearancechecking and �-rules generate the recursively enumerable languages, while those without�-rules generate only context-sensitive languages that are in NP. Before explaining thenew results obtained we give the de�nition of context-free matrix grammars with andwithout appearance checking as it is used in [DP 89].De�nition 5.1 Let G = (VN ; VT ; S; R) be a context-free grammar with nonterminal al-phabet VN , terminal alphabet VT , initial symbol S 2 VN , and a set R � VN � (VN [ VT)�in which all productions carry a unique label from a set �. If r is a label of the productionA! w we write r : A! w.A context-free matrix grammar � based on the context-free grammar G is speci�edby the triplet � := (G;M; F ) where M � �� is a �nite set of sequences of productionlabels, each of which is called a matrix and the set F � �, containing the labels ofthose productions that can be passed over in case they are not applicable. This is calledappearance checking.Derivation of sentential forms proceeds as follows: u =)ac v holds if and only if thereexists a matrix m = r1r2 � � �rn in M and some strings w0; w1; : : : ; wn 2 (VN [ VT)� suchthat u = w0, v = wn, and for each i 2 f1; : : : ; ng either of the cases (a) or (b) holds:(a) wi�1 = w0i�1Aiw00i�1 and wi = w0i�1 viw00i�1;6



(b) wi = wi�1, Ai does not occur in wi; and ri 2 F .If F = ; then we write =) instead of =)ac . Note that in this case all non-applicableproductions lead to a blocking derivation. The language generated by the matrix grammar� := (G;M; F ) is de�ned as L (�) := fw 2 V �T j A0 �=)ac wg:De�nition 5.2 The family of all context-free matrix languages with possible appearancechecking is denoted by L (M;CF; ac) or by L (M;CF��; ac) depending on whether theunderlying context-free grammar is �-free. The corresponding classes of languages thatcan be generated by grammars without appearance checking, i.e., with F = ; are denotedby L (M;CF) and L (M;CF��).It is known thatL (M;CF��; ac) is an AFL strictly contained in the family of context-sensitive languages (see [Ro 69], [vL 75], and [DP 89]), while L (M;CF; ac) equals thefamily of recursively enumerable sets. The inclusionsL (M;CF��) � L (M;CF��; ac) and L (M;CF��) � L (M;CF)are obvious from the de�nition. It was conjectured, but not proved in [DP 89] that theseinclusions are proper. This assumption will be con�rmed in this section by proving thateach language over a one-letter alphabet within the former family is necessarily regular.It was shown in [DP 89, pp. 267-270] that Petri nets (with a �xed initial marking)can be simulated by matrix grammars, i.e., given N and m0, one can compute a matrixgrammar � such that the set of reachable markings equals  (L (�)).We will demonstrate here that the reverse simulation can be accomplished as well. Let� = (G;M; ;) be a context-free matrix grammar with G = (VN ; VT ; R; S) its underlyinggrammar, and A = (Q;�; q0; fq0g) be the canonical �nite automaton accepting M�, theset of legal applications of sets of rules of G.The place set of the net N = (P; T; F; B) shall contain one place for every state of Aand one place for every (terminal or nonterminal) symbol of G. This is achieved by settingP := Vn[VT [Q. Moreover, the transition set coincides with �. For every rule r : A! wlet q r! q0 be the corresponding arc of A. Then we setF (r) :=  (Aq) and B(r) :=  (wq0):If the net N is started from an initial marking m0 containing one token on S and onetoken on q0, it simulates derivations of � step by step. Every reachable marking containsthe Parikh image of the current sentential form in VN [VT and the state of the automatonin Q.The other two parameters of the semilinearity problem are used to select the actualelements of L (�). We are interested in transition sequences leading from m0 =  (Sq0)to any �nal marking in which q0 contains one token and all elements of VN and Q areempty. This assures that the `derived' sentential form contains no more nonterminals andthe automaton is in its (initial and) only �nal state. Hence we de�neL := �( (Sq0);  (vq0);  (w)) ��� v 2 N�T ; w 2 ��	:7



The mapping � is used to project an element (a; b; f) of L onto the portion of b describingthe �nal marking on VT . This way we obtainSOLP = f (w) j w 2 L (�)gas required.With the help of this simulation we easily develop the assertions proposed in theintroduction.Theorem 5.3 All languages over one-letter alphabets in L (M;CF) are regular.Proof: Let fag� � L 2 L (M;CF) and P = (N;L; �) be the semilinearity problemderived from L. Then � maps L into INVT = IN. Hence Corollary 4.3 is applicable andshows that SOLP =  (L (�)) is semilinear. Consequently, L (�) itself is regular.By using the same simulation, the �niteness problem for the families of context-freematrix grammars without appearence checking can be reduced to Corollary 4.1.Theorem 5.4 Finiteness for context-free matrix languages without appearance checkingis decidable.Proof: Again let L 2 L (M;CF) and P = (N;L; �) be the semilinearity problem derivedfrom L. Then SOLP =  (L (�)) being �nite is equivalent to L (�) itself being �nite. Hencethe theorem follows from Corollary 4.1.6 Answers to Open QuestionsProblem 1.3.3 of [DP 89] summarizes the six open problems in Table 1.3.3, the list ofdecision questions for matrix and random context grammars. Four of them consider thequestion for which of the familiesL (RC;CF��); L (M;CF��); L (RC;CF); and L (M;CF)the �niteness problem is decidable. Since random context grammars can be e�ectivelytransformed in matrix grammars, all four cases can be reduced to Theorem 5.4, andanswered with \yes".The other two decidability questions given in the table, the word problems forL (RC;CF) and L (M;CF);can be solved with the methods presented in the book itself. If one wants to decidewhether a string w is an element of a matrix language L one �rst computes the matrixlanguage L0 := L \ fwg (Lemma 1.3.5, closedness under intersection by regular sets) andthen determines whether L0 is empty (decidable by Theorem 1.3.4).We now have a look at our other main result, Theorem 5.3, which tells us that matrixlanguages over a one-letter alphabet are regular. One of its implications is that the open8



problem 1.1.1 of [DP 89] questioning whether the context sensitive, but not context freelanguages fa2n j n � 1g; fan2 j n � 1g; and fan j n is a prime number g (2)belonging to L (M;CF) can be answered in the negative1. Hence, these sets serve as the\concrete" languages in L (CS ) nL (M;CF) sought for in [DP 89, Problem 1.2.2].Since context-free matrix grammars with appearance checking, but without �-rulesexist for the three languages of Equation (2), we can answer the last question in [DP 89,Problem 1.2.3] as well:Corollary 6.1 The inclusion L (M;CF��) � L (M;CF��; ac) is strict.The same observation further shows thatL (M;CF) is not a superset ofL (M;CF��; ac)and strictly contained in RE ([DP 89, Problem 1.2.1]). The last inclusion could as well bededuced from the decidability of the membership problem for L (M;CF) (see the remarkabove).The inclusions L (RC;CF) � L (M;CF) � RE have some implications to closureproperties as well:Corollary 6.2 The families L (RC;CF) and L (M;CF) are not closed with respect tointersection or to complementation.Proof: It is well known (see [GGH 67, Theorem 3.1]) that the closure of CF with re-spect to homomorphism and intersection is the class of recursive enumerable languages.Since both, L (RC;CF) and L (M;CF), contain CF and are closed with respect to ho-momorphism, but are strictly contained in RE, they cannot be closed with respect tointersection.Now the result about complementation, by De Morgan's law, follows from the fact thatthe two families are closed with respect to union.Finally we consider the class L (�USC) of unordered scattered context grammars hav-ing only a single terminal symbol. These grammars are almost identical to Petri nets withonly one transition label. The class of languages generated by such grammars coincideswith the family of Petri net languages. Hence we can apply Corollary 4.4 to state:Corollary 6.3 All languages over one-letter alphabets in L (�USC) are regular.7 ConclusionBy applying decidability results on semilinearity problems about Petri net reachabilityrelations proved in [Ha 90] we solved a number of long-standing open problems in thetheory of regulated string rewriting.Speci�cally we have proved that the following three classes of languages coincide overa one-letter alphabet:1It was already shown in [La 88] by a reduction to the reachability problem that (two of) these setscannot be Petri net languages. 9
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