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Abstract.  This report introduces DIA -MOLE, a tool that supports an engineering-oriented approach
towards dialogue modelling for a spoken-language interface. Our approach is applied to the domain of
appointment scheduling. A major step towards dialogue models is to know about the basic units that are
used to construct a dialogue model. DIA -MOLE does not employ theory-based dialogue units because they
are subject to human interpretation and often cannot be recognized from data available in a spoken-language
system. We pursue a data-driven approach and apply unsupervised learning to a sample set of spontaneous
dialogues using multiple knowledge sources, i.e. domain and task knowledge, word recognition and prosodic
information. Using these data, DIA -MOLE supports segmentation of turns and  interpretation of their
illocutionary force based on a model of the task. For this purpose we had to develop a model of interactive
problem solving in the domain of appointment scheduling. As a result of learning we obtain domain- and
task-specific dialogue acts (DDA).

A first validation of the set of learned DDAs shows that they are prominent for this domain and task. Some
DDAs show significant correspondence to specific nodes in an RST-structure. Automatic DDA labeling was
compared with human dialogue act labeling according to a predefined labeling scheme. Dialogue act
prediction was also employed to evaluate our approach.

Kurzfassung.  Das Werkzeug DiaMoLE unterstützt einen ingenieursmäßigen Ansatz zur Dialog-
modellierung für eine gesprochen-sprachliche Mensch-Maschine-Schnittstelle. Der vorgestellte Ansatz findet
Anwendung in der Domäne Terminvereinbarung. Ein bedeutender Schritt auf dem Weg zu einem Dialog-
modell ist die Kenntnis der zugrundeliegenden Einheiten, aus denen es sich zusammensetzt. In Dia-MoLE
finden keine theoriebasierten Dialogeinheiten Anwendung, die menschliche Interpretation voraussetzen und
die auf der Basis vorhandener Daten in einem gesprochen-sprachlichen System nur eingeschränkt erkannt
werden können. Unter Verwendung verschiedener Wissensquellen, wie Domänen- und Aufgabenwissen,
Worterkennung und Prosodie wird anstattdessen ein datengetriebener Ansatz verfolgt. Ausgehend von diesen
Daten wird in Dia-MoLE die Segmentierung von Äußerungen und die Interpretation der Illokution basierend
auf einem Modell der Aufgabe vorgenommen. Hierzu mußte für die Domäne Terminvereinbarung ein Modell
interaktiver Problemlösung entwickelt werden. Anschließend wird ein unüberwachtes Lernverfahren auf eine
Reihe derartig vorverarbeiteter spontansprachlicher Dialoge angewendet. Als Ergebnis des Lernverfahrens
werden domänen- und aufgabenspezifische Dialogakte (DDA) gebildet. Weitere Dialogbeiträge können
aufgrund der DDA klassifiziert werden.

Erste Analysen bestätigen, daß die Menge der gelernten DDAs charakteristisch für die Domäne und Aufgabe
sind. So zeigen einige DDAs signifikante Übereinstimmung mit bestimmten Knoten in einer RST-Struktur.
Automatisches Labeling mit DDA wird verglichen mit human-gelabelten Dialogakten. Darüberhinaus wurde
eine Dialogaktvorhersage implementiert, um die Qualität der Ergebnisse dieses Ansatzes auch in dieser
Hinsicht zu evaluieren.
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1 . INTRODUCTION

Dialogue modelling for natural language interfaces has become a topic of substantial interest
during the last decade. It relates work on discourse analysis and speech acts with tasks in an
application domain and human computer interaction. Most approaches assumes the existence
of a set of units, often called dialogue act which are considered building blocks for a
dialogue model.

We should first have a look at different views at and definitions of dialogue acts. In some
approaches, a set of dialogue acts is defined within a theory of action that is based on
models of mutual knowledge. Dialogue act perform some change of knowledge [Coh87,
Coh90, Faw89]. Bunt [Bun94] describes dialogue acts as contributing to different
dimensions of context, like linguistic, semantic, physical, social and cognitive context. All
of these theories ascribe some meaning to a single unit, while structure-oriented approaches
mainly ascribe meaning to relations between units. They build up exchange structures
[Wac86, Jön91] or are made for text structuring, as for instance Rhetorical Structure Theory
(RST) [Man88] that does not cover interaction [Moo92]. Several researchers argued that the
domain and task structure has an important impact on discourse structure and thus integrated
them into their theories and systems [e.g. Woo84, Gro86,  Lam91]. There is also some
work on integrating different structures into a unique framework [Faw92, Dar94].

The recognition of any of these discourse structures from linguistic structures is by itself a
proper subject of research [Hir93, Lit94, Kno91, Mas95].

Basic units like dialogue acts are used to build up some dialogue model . Two approaches
for representing a model or structure of discourse are competitive: plan-based models
[All82, Lit85, Car91, Lam91, Ram91a, You94, Chu94] and discourse grammars [Bil91,
Faw89, Bun89, Ste93]. Some approaches combine both representations, e.g. [Ale94].

Basic units and plans or grammars are means of representing models. We will now
concentrate on the question of how to obtain the content of a model for the natural language
interface in an application, i.e. how to engineer dialogue models. Engineering has at least
two facets:

• Which information or knowledge is relevant for dialogue models?

• How can we acquire this knowledge?

Our own prior work has contributed to the design of dialogue structures starting out from a
knowledge-based system [Möl90, Möl92a, Möl94]. Other engineering-oriented work
contributes to dialogue-acquisition techniques [Jön93].

1.1 . Some problems of dialogue engineering

When modelling a dialogue for the natural language interface of an application, we have
experienced that all the theories mentioned above provide some means for structuring a
dialogue, but none of them well fits to what is needed in a specific application environment
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[c.f. also Jön93]. All theories fail to explain some phenomena, and we have shown in prior
work that there are even domain-specific structures constituting certain kinds of domain-
specific dialogues [Möl92b, Ram91b]. Most existing dialogue system engineers thus
develop their own set of dialogue acts [c.f. Mai94, Jek95].

Additionally, labeling dialogues is a very time-consuming work, it requires substantial
expertise in linguistics and domain knowledge, and it usually does not provide
reproduceable results because the classification of a dialogue into units as specified by those
theories is sometimes ambiguous [c.f. Hir92] and depends upon the labeling person's
understanding and interpretation. To overcome these deficiencies statistical methods have
been developed to evaluate the consistency of labels set by a person and the inter-personal
quality and integrity of a labeling system [Cun95].

A further throw back for the integration of natural language front-ends into application
systems is that the acquisition of appropriate dialogues is already a complex and long-lasting
task. Either naturally occuring dialogues have to be recorded, transcribed (at great expense)
and afterwards to be restricted to a set of possible interactions as supported by the
application system. Alternatively, one may adopt some Wizard-of-Oz experiments to acquire
dialogues [Jön93, Bad94], but for practical reasons in a dialogue engineering task Wizard-
of-Oz, is only useful for written language: Transcriptions of phonetic and prosodic data in
spoken language can be afforded for research prototypes, but they are far beyond the
possible effort in an industrial dialogue engineering task, thus there is a loss of certain
information of spoken language when analysing transcribed dialogues.

As a consequence, an approach to engineering of dialogue models for spoken dialogue
front-ends should only use a small number of transcripts, and transcripts should be easy to
make, like simple speech-to-text transcriptions. Instead, the dialogue engineering approach
should rely more on resources which are available in the specific speech-processing system,
e.g.domain knowledge of the underlying knowledge based system, prosody recognizer and
word recognizer.

1.2 . Steps towards a solution for dialogue engineering

1.2.1. RST and the idea of  a new theory of dialogue structures

In a first experiment, we used data from the VERBMOBIL (VM) project1 and ascribed
rhetorical relations to textual transcriptions. It turned out that they are not always applicable,
notably to interaction phenomena, e.g. when motivating turn shift etc., and we had to add
two relations COMMITMENT and WIDEN to enable a RST-structure for whole dialogues.2

We compared applicable relations with prosodic transcriptions and discovered some
correlations between RST relations and prosodic events as well as topic shifts, thus
supporting the results given in [Hir92].

1 VERBMOBIL is a german joint project working on a speech translation system.
2 COMMITMENT became necessary for some structures in a dialogue, where the satellite confirms the

nucleus and states some commitments. WIDEN is the counterpart of ELABORATION.



FBI-HH-B-191/96 5  Dia-MoLE

This raises the question, whether it makes sense to develop a new theory that integrates
different structures, e.g. to incorporate interaction phenomena into RST. Fischer et al. chose
this option in the CORINNA system [Fis94]: Based on a speech act-oriented RTN-like
dialogue model that represents illocutionary aspects3 they built up RST-structures for
information seeking dialogues. While some of their exchange structures map to existing
RST-relations, they had to add some task-specific relations, like SUPERTERM, which they
call tactics, to be able to get a RST-structure for whole dialogues.

Resulting RST-structures from our data appeared not to be sufficient as base for a dialogue
model, and we did not find any indications to reliably recognize relations. Our previous
experiences with domain-specific structures were one objection to the idea of developing a
new theory.

Another challange was our goal of reducing the cost of dialogue modeling. A new theory
does not help solving the engineering problem, it only contributes to the problem of
providing appropriate representations. One task of dialogue model engineering is to
recognize structures. Litman has successfully shown that machine learning is an easy way
of inducing classification rules for cue words. This allows for processing a larger amount of
data which raises accuracy compared to manually abstraction of rules [Lit94, c.f. also
Sie94]. Similar results have been reported on discourse-level information extraction
[Leh94].

1.2.2. Learning dialogue structures

One possible approach for building a dialogue model under the objective of efficiency is to
use similar supervised machine learning techniques to classify data from dialogues into
classes each of which corresponds to some previously known unit from one of the dialogue
or discourse structuring theories.

Even if supervised learning would lead to a good recognition of units from existing
discourse or dialogue theories, we would be confronted with the problem of combining
different theories in such a way that we are able to build up a dialogue model which
considers interaction aspects as well as discourse structure. As we are interested in classes
of these combinations, we pursued a data-driven approach. We followed the suggestion of
Litman: "Another advantage of the machine learning approach is that the ease of inducing
ruleset from many different sets of features supports an exploration of comparative utility of
different knowledge sources"

We use a learning algorithm for a) inventing new classes of dialogue structuring units and b)
describing how these classes could be characterised in terms of data that are available in a
spoken dialogue system. A very natural unit is the dialogue turn, but some turns are lengthy
and include multiple dialogue acts. Therefore, turns have to be segmented into meaningful
units. The problem of segmentation in spoken language arises. Our solution to segmentation
is pointed out later in this paper.

3 Fischer, Maier and Stein call their dialogue model COR (COnversational Roles).
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The advantage of an unsupervised learning approach to dialogue structuring lies within the
reduced effort to obtain a dialogue model. In manually built dialogue models as well as with
supervised learning, it is necessary to transcribe, analyze and label dialogues according to
some theory. By using unsupervised learning, one may process hundreds or thousands of
dialogues.

Our data-driven approach to dialogue engineering discussed so far relies on meaningful
segments in a dialogue from which a model is abstracted. To support this approach, we
need a tool that enables us to form these segments and their meaning from data in a spoken
language system environment and that enables us to learn some type of models. This tool is
introduced below.

2 . DIA -M OLE:  A TOOL THAT SUPPORTS LEARNING OF
MODELS OF SPONTANEOUSLY SPOKEN DIALOGUE

It is the goal of DIA -MOLE (DIA logue MOdel Learning Environment) to bring to light
domain-specific dialogue structures. Available data in natural language systems are used to
form segments and to ascribe some meaning to them. Domain and task knowledge is used to
interpret the meaning of segments. All these information sources are put together, and an
unsupervised learning algorithm supports deriving classes of segments.

These classes are characterized by different aspects each contributing to the model of co-
operative and interactive problem-solving, i.e. the domain task. We call our classes domain-
specific dialogue acts (DDA), because the interpretation of the illocutionary force of dialogue
contributions is grounded in the model of the domain task. The learning of dialogue acts is a
central issue in our approach for domain-oriented engineering of spoken dialogue systems.

In section 4 we will show that some of the DDAs in our domain correspond to acts in the
speech act tradition, while the illocutionary force of other DDAs is directly related to the
underlying domain and task model.

2.1 . General design guidelines for DIA -M OL E

Our engineering-oriented approach to dialogue modeling is based on some design
guidelines, which are characteristic features of the overall DIA -MOLE tool and its
subcomponents:

• Task-Orientation: Domain-independent approaches to dialogue modelling tend to be
less specific, and therefore their recognition guarantees less accuracy. Domain-
independent dialogue act recognizers can be exclusively based on linguistic
phenomena to interpret the illocutionary force and do not consider the specificity of a
domain-specific sublanguage [Gri86, Leh86]. Our approach does not pursue general
dialogue capabilities, instead it should be restricted to goal-oriented dialogues and to
the sublanguage of a specific domain and task. We argue that this is the most reliable
way of recognizing dialogue acts in a spoken dialogue system.
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• Robustness: In a spoken dialogue system robustness means that there must be a useful
reaction even if only parts of speech have been recognized. Complete parsing of
speech will fail in most cases. For this reason we applied partial parsing that picks up
relevant parts while irrelevant or unrecognisable parts remain unconsidered. Similar
decisions have been made in most application-oriented spoken dialogue systems [e. g.
Nov96, Lup96, Mus93, War96], and recently Eckert [Eck96] pointed out, why partial
parsers must be used when analyzing spontaneous speech.

• Use data from the system: The upper-level interpretation of data into some meaningful
units strongly depends on lower-level data (e.g. probability scores from word
recognition). Consequently, we only use data that are already present in an existing
spoken natural language system environment, or data which are not subject to system
change.

• Minimise the  engineering effort:  Data analysis is very expensive, leads to many
errors and often includes human interpretations which cannot be reconsidered by a
computer. For this reason we should used learning methods.

• Use multiple knowledge sources: Spoken dialogue contains many channels of
information, and it is the combination of all of those channels including domain and
task knowledge as well as situational knowledge that enables understanding.

The following section gives an overview on different knowledge sources within a dialogue
system that may constitute these channels.

2.2 . Evaluating multiple knowledge sources that could be used
to engineer dialogues in a spoken language dialogue system

This section deals with the availability and structure of knowledge sources, their use for
dialogue modelling and their integration into DIA-MOLE.

2.2.1. Domain-specific knowledge

The structure of the task and of the domain knowledge are major factor for creating
coherence in goal-oriented dialogues [Möl90, Ram91b, Möl94]. Knowing these structures
is useful for the recognition of a dialogue act as it strictly reduces ambiguity.

A domain and task model is an integral part of most knowledge-based systems. Although
knowledge about the domain and the task is already available this kind of system
environment, some additional modelling has to be done in order to adapt it to the dialogue
module. Especially the task model for interactive problem solving which is part of a
dialogue is different from the task model for automated problem solving. An example for
different task models is given later on in the context of building up models for the domain of
application scheduling.

Task knowledge controls inference steps and is typically represented using goals and plans.
In natural language systems as well as in some other knowledge based systems, domain
facts describing the structure of and objects in a domain are often represented by
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terminological logics. A system that clearly distinguishes different knowledge levels and
allows different well investigated representations is KARL [Ang91, see also Fen94]. We
adopt their notions denoting different knowledge levels, which stem from the KADS
methodology [Bre86].

2.2.2. Data from the word recognizer

A first step in processing written language is to extract words from character strings and to
access a lexicon. When processing speech, a word recognizer analyses a signal using
pattern recognition techniques and provides word hypotheses or graphs of word
hypotheses. Word hypotheses are probabilistic and may be ambiguous, but they are
certainly one of the basic source of information even for recognizing dialogue acts. For our
first experiments we used a word recognizer system with a logarithmic acoustic score and
time intervals that are retrained by forced alignment. Later experiments were conducted with
real data from the word recognition including errors like wrong assertion or deletion of
words and word changes. The word recognizer is based on the system described by
Hübener et al. [Hüb96]. Figure 1 shows the 'best path'-output of the word recognizer we
used. The first two columns provide absolute begin and end times of a word, the last
column consists of the acoustic score.

310 460 ja -76.611984
460 800 prima -82.753677
800 1010 dann -87.347595
1010 1230 lassen -78.228905
1230 1380 Sie -74.399940
1380 1470 uns -83.025497
1470 1590 doch -80.284233
1590 1650 noch -87.236458
1650 1780 einen -75.157867
1780 2060 Termin -83.896736
2060 2580 ausmachen -80.108749
2580 2760 wann -81.232422
2760 2860 w"are -87.095200
2860 2970 es -78.521584
2970 3210 Ihnen -74.976280
3210 3330 denn -84.806023
3330 3700 recht -70.472916

Figure 1: Output of a word recognizer

2.2.3. Prosodic data

Besides word recognition, prosodic features like accent or pause can be deduced from the
speech signal, too [Nöt91]. Prosody also yields a sentence melody, but this is of less
importance in our context. By intonation, accents are set and thus, important information is
stressed and less important things are put into the background [Bat93]. Semantic units are
often marked by pauses at the beginning and at the end (cf. section 3.3.1 and figure 12).
These properties are supposed to be clues to the understanding of spoken language, whereas
in written language properties like syntax, interpunctation and more elaborate formulation
have to compensate the function of prosody.
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  590  --    690 ms accent, length  100 ms, confidence 0.471084
 1010  --   1130 ms accent, length  120 ms, confidence 0.650081
 1330  --   1430 ms accent, length  100 ms, confidence 0.561492
 1690  --   1780 ms accent, length   90 ms, confidence 0.330556
 1840  --   2070 ms accent, length  230 ms, confidence 0.477964
 2300  --   2470 ms accent, length  170 ms, confidence 0.400369
 2650  --   2750 ms accent, length  100 ms, confidence 0.442033
 2780  --   2890 ms accent, length  110 ms, confidence 0.551336
 2960  --   3490 ms accent, length  530 ms, confidence 0.410003

Figure 2: Output of an accent recognizer.

Kompe et al. [Kom94] have shown that it is even possible to derive some functional role of
utterances from prosody. We used data from a prosodic labeling component that yields
accent and senctence modality (question, assertion, continuation) [Str95]. Figure 2 shows
some of these data.

2.2.4. Syntax and Semantics

Spoken language does usually not consist of well-formed sentences [Web95, Eck96], thus a
dialogue system cannot rely on syntactically sound sentences. Nevertheless, smaller units
like nominal phrases may contribute a little to contribute understanding of spontaneous
speech. Compared to dialogue systems, processing written natural language, syntax is less
important for spoken dialogue systems [Sch92, Sch93]. For this reason, syntactic parsing
in DIA-MOLE is restricted to partial parsing. Semantic processing has not been integrated
into this prototype yet.

2.3 . Architecture of the DIA-MOLE dialogue-act learner

The DIA logue MOdel Learning Environment (DIA-MOLE, figure 3) addresses the problem
of learning dialogue models within a spoken language system environment. The main
module learns domain-specific dialogue acts (DDA).

Word recognizer [Hüb96] and prosodic tagger [Str95] are modules that were developed
independent of this work. Both processes (round boxes) provide input data (rectangular
boxes) for our system. Domain knowledge and task knowledge are either already existing in
the background knowledge-based system, or they have to be engineered. Domain specialists
carry out syntactic and meaning analysis according to the domain structure and the
underlying task model. As a result they provide domain-relevant events. Segmentation
breaks turns into segments which are labeled with features from prosody and domain
events. These labeled segments are presented to a learning algorithm resulting in a
classification hierarchy for domain-specific dialogue acts (DDA).

The resulting DDA hierarchy can be used to classify and automatically label segments. From
automatically labeled dialogues, a prediction module learns about predicting a subsequent
act in a dialogue. Predictions may be used by again other modules of the spoken dialogue
system to adapt their environment. E.g. the word recognizer may use dialogue act
predictions to choose a specific language model trained on these DDA classes to improve
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word recognition. Furthermore, a dialogue-planner module can use predictions to display
natural behaviour. The architecture of DIA -MOLE also allows self-adapting dialogue
models. If DIA-MOLE is integrated in a spoken dialogue system which is in practical use, all
occuring dialogue turns, or more precisely, segments may be presented to both, the DDA
classifier for further processing of that turn and to the DDA learner to improve the model in
its application situation. For this reason we adopted an incremental learning algorithm
within the DDA learning module. In this report, we focus on DDA learning within DIA -
MOLE.

Speech Signal

Predicted DDA

Word Recognition Prosodic Tagger

DDA 
Hierarchy

Domain Specialists

Segmentation and Segment Labeling

DDA LearnerDDA Classifier

DDA Prediction 

Environmental 
case data

Prosodic
Events

Word Sequence

Domain Events

Labeled Segments

Domain and
Task Model

Prediction
Database

DDA Labeled Segmentsa b a c

Figure 3: Architecture of DIA-MOLE
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2.4 . Learning algorithm

2.4.1. Requirements  and choice

Some criteria for distinguishing learning algorithms has been provided by Fisher [Fis85].
Supervised learning of dialogue acts – as it is done by most learning algorithms – would
mean that the recognition of existing dialogue acts from data has to be learned. Although this
an interesting research topic, supervised learning of dialogue acts is out of the question for
our research because we will deliberately not rely on an existing theory of dialogue
structure. Our learning problem is that of aggregating segments or, with other words, we do
concept formation for new classes of dialogue structuring units. Consequently, learning
should be purely data-driven, i.e. unsupervised.

As we know from many parts of natural language processing, different information
channels, e.g. topicalisation (syntax) and accent (prosody), are often combined to express
things. This is an argument against using monothetic learning algorithms because they
would classify along a single attribute. Instead, we have to use one of the rare polythetic
learning algorithms that classifies along several attributes, simultaneously.

Another distinguishing feature of learning algorithms is the kind of the result that we
achieve. Does learning result in a set of mutually exclusive clusters, a classification tree or a
set of clusters which might overlap? We would prefer a learning algorithm that produces a
hierarchy because we are interested in the combination of different attributes characterizing a
dialogue act. If we set up different clusters, we would more or less regain the attributes that
we provided to the learning algorithm.

A last distinguishing feature of learning algorithms is the way in which data have to be
presented to the algorithm. Most algorithm need to know all data to compute a result, while
some learning algorithms perform incremental learning and produce a result after every piece
of data, they have processed. An incremental learning algorithm is usually less optimal, but
it allows to adopt a system in practice with little computational effort.

There are not many unsupervised learning algorithms working polythetic. The demand for a
hierarchy and directly inspectable classifying attributes rules out some neural network
algorithms that carry out unsupervised learning like Kohonen networks [Rit89, Koh84],
competitive learning [Rum80, Gro87] or ART [Car88, Car90]. One of the best known
symbolic machine-learning algorithm that fulfills our criteria is COBWEB [Fis87] or its
decendent CLASSIT [Gen89], respectively. Thus a COBWEB-like algorithm is the basis
for our work. There are some extensions concerning overlapping clusters and multiple
hierarchies [Mar94], which we have not considered for the reasons given above. For the
experiments presented in this report, we have developed our own algorithm that comprises
ideas from COBWEB and CLASSIT and added features for dealing with uncertain and
incomplete knowledge.
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2.4.2. Basic definitions from COBWEB and CLASSIT

For abstracting classes, COBWEB uses a measure of clustering quality. In the following
formula, A are attributes, V are values, and C are classes. P(Ai=Vij |Ck) is the probability of
a value in a class or its predictability. P(Ck|Ai=Vij) is the probability of a value being part of
a class, or its predictiveness.

Σ k Σ i Σ j  P(Ai=Vij ) P(Ck|Ai=Vij) P(Ai=Vij |Ck)

Function 1: Clustering quality

From this quality measure, a value called category utility is derived by transformation and
normalization that allows to determine where to integrate new cases. K is the number of
cases. The algorithm  manipulating the hierarchy is described in Fisher [Fis87].

( Σ k  P(Ck)  Σ i Σ j  P(Ai=Vij |Ck)2  -  Σ i Σ j P(Ai=Vij)2 )  /  Κ

Function 2: Category utility in COBWEB

CLASSIT replaces discrete values from COBWEB with numeric values using the same
algorithm to manipulate the hierarchy. σik is the standard deviation of an attribute in a given

class and σip is the standard deviation for a attribute in its parent node.

( Σ k  P(Ck)  Σ i 1/σik  -  Σ i 1/σip )  /  Κ

Function 3: Category utility in CLASSIT

Computing the category utility according to function 3, raises two problems:

• If a class comprises only one value, standard deviation is zero and the value of the
devisions is infinite. To catch this error, Gennari et. al introduce a minimal σ called
acuity.

• Numeric values with very small difference will create different classes and they are
never classified as being identical, although the difference is just some noise in
numeric data. To enable the algorithm to classify unsharp values into a single class,
they needed to introduce a cutoff.

2.4.3. Extensions and improvements for learning in DIA-MOLE

In our implementation, we integrated numeric and symbolic values. For this purpose, we
had to normalize numeric values. The category value for numeric values in our
implementation is then modified to

 ( Σ k  P(Ck)  Σ i 1/σik2√Π  -  Σ i 1/σip2√Π )  /  K

Function 4: Normalized category utility for numeric values in DIA-MOLE
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In addition to integrating symbolic and numeric values, we extended the expressiveness
towards the needs of dialogue modelling and spoken language. Data that are presented to the
learning algorithm may now contain

a) multiple same attribute-value pairs,

b) probability values for attribute values and

c) probability values for whole cases.

The extension (a) allows us to handle double existence of the same attribute-value pairs
being different from the single existence of such a pair, although their place in the
classification hierarchy will be very close. Input of probability values for attribute-value
pairs (b) enables us to use probability values stemming from underlying modules in a
spoken language system directly for processing within the learning algorithm. They may
express the quality of data. Moreover, it is possible to exert influence on the importance of
specific attributes and values for the resulting classification hierarchy. The input of
probability values for whole cases (c) enables us to consider a measure of quality for cases.

Computation of the functions 2 and 4 had to be changed to incorporate these extensions.
Instead of computing the attribute-value probability for symbolic values according to
function 5 as the number of an attribute having a specific value divided through the overall
number of that attribute, we added extensions b) and c) resulting in function 6. AQ is the
quality of an attribute having one specific value and CQ the quality of a whole case, both
given as probability values, c stands for cases.

P(Ai=Vij) <=> P(Vij |Ai) <=> Σ c Aci=Vij  /Σ c Aci  <=> #Ai=Vij  /# Ai

Function 5: Attribute-value probability in COBWEB

 P(Ai=Vij) <=> Σ c (Aci=Vij) Qij /Σ c AciQix , where Qab=AQab CQab

Function 6: Attribute-value probability in DIA-MOLE

Similar changes had to be made for numeric values. Instead of computing mean and
standard deviation like in CLASSIT (functions 7) both are weighted with the quality Qi in
DIA-MOLE resulting in functions 8, where Qi=AQi CQi.

  µ =  1/n  Σ i Vi    and   σ = √ (1/n Σ i (µ-Vi)2)

Functions 7: Mean and standard deviation for numeric attributes in CLASSIT

  µω =  Σ i Vi Qi /Σ i Qi     and   σω = √ (Σ i (µω-Vi Qi)2 / Σ i Qi)

Functions 8: Weighted mean and weighted standard deviation for numeric attributes in DIA-MOLE

While the goal of learning is to find some abstractions from a learning set of data that also
hold for similar but different data (test set), over-learning is the effect of loosing the
abstraction by adapting too much to the learning set. To prevent over-learning, we
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implemented the cutoff as described by Gennari [Gen89], but it did not provide any useful
results. For pruning the classification hierarchy during learning we developed a tree-pruning
method that uses a

• maximal equality boundary.

This pruning methods works for numeric and for symbolic values. Normally, the learning
algorithm classifies a case down and sometimes changes the hierarchy as long as the
category utility for the integration of one case into one class is less than the category utility
for the creation of a new node and and thus an enlargement of the classification tree. This is
always the case, if the attribute set of a case is not identical to the attribute set of a class and
leads to single classes for every different attribute combination at the leaves of the
classification tree. In our implementation further activities of the learning algorithm are
stopped, if the category utility for the integration of one case into one class exceeds the value
of the maximal equality boundary. For the readers comprehension we would mention at this
point that this is a value that holds for all cases that are classified into or under this class.

2.4.3. Extensions and improvements for classification in DIA-MOLE

While the authors of most learning algorithm concentrate on how to learn classification
hierarchies, they do not particularly address how to use their classification hierarchy. This
hold for Fisher and Gennari, too. Our implementation of a classification algorithm in DIA-
MOLE was realized similar to learning: It computes the category utility for all subclasses of
root, chooses the best, computes again the category utility for all subclassses of that class
and so on. It does of course not compute the category values for different hierarchy
modifications or change the classification hierarchy. We suppose, that this is the way,
Fisher and Gennari applied their classification hierarchy, too.

Application of this step-wise classification reveals a trace or path through the classification
hierarchy, which in its reversed list form (from the most specific class to the root) we will
call classification path. Additionally, when classifying cases, we apply two further pruning
methods to the resulting classification path:

• as an absolute boundary the minimal number of cases that were classified into that
class, and

• as a relative boundary the maximal case prediction.

The first pruning method minimal case number cuts off all classes that are too specific and
were based on a too small number of cases during learning. The second and relative
boundary corresponds to the maximal equality boundary during learning and should be
smaller than it. Case prediction is the category utility for a given class if a new case would
be integrated, and maximal case prediction is a boundary, where classification is stopped, if
it is reached. Both pruning methods reduce the number of classes into which cases are
typically classified. Although this mostly provides good results, we added a further criterion
for classification path pruning that works together with the maximal case prediction:

• a good prediction gain value.
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Sometimes when classifying a case, the case prediction starting at root stays for several
levels down the classification hierarchy near 0, then it jumps to a high value, e.g. 0.7, from
one level to the next and again stays for several levels under some finishing boundary. Other
cases show a linear prediction gain for every level that they are classified down the
hierarchy. When classifying cases, e.g. segments into DDAs, we are interested in getting a
small number of classes with high predictions, but realizing the structure of the hierarchy, it
is obvious that the higher the number of classes, the better prediction rates are. So there is a
trade off between the number of classes and the prediction that could be achieved. To
maximize informational content in our DDA classes, we stop classification, if there is a
significant gain of case prediction, e.g. 0.5, from one level to the next.

Our learning algorithm provides a classification path for each segment in a dialogue. We use
the most specific class in the classification path as a label for the dialogue act. This label is
ascribed to all segments that are classified into this class. The label itself is meaningless, a
number, but the class itself should be a meaningful cluster of DDAs. In the next section we
introduce one module within DIA-MOLE that allows to evaluate a learned set of DDAs.

2.5 . Dialogue Act Prediction

One measure for evaluating the quality for a given number of types of dialogue acts is their
predictability. DIA-MOLE offers a module for building up n-gram models, i.e. the prediction
of a case n when knowing all n-1 predecessors and the probability of this prediction, or
speaking in terms of  dialogue modelling, this module allows to predict the most probable
subsequent dialogue act. For evaluating predictability, we only consider the two most
probable branches.

The way segments in DIA -MOLE are labeled with a dialogue act class allows some
additional treatment of relaxation from the most probable prediction. Instead of comparing
the prediction with the class into which the succeeding segment will be classified, we
compare the path of a predicted class and the path of succeeding segment. If the most
specific classes in both paths are not the same, we could compare more general classes from
the path. With this technique, we have the opportunity to recombine those classes of
dialogue acts which can be clearly distinguished by data, but which are too specific to serve
as a base for prediction.

3 . AN IMPLEMENTATION FOR THE DOMAIN OF
APPOINTMENT SCHEDULING

As an example domain we chose appointment scheduling. This choice enabled us to use data
on spoken dialogue that are available in our department within the VERBMOBIL project
(VM). We could also use preprocessed data from word recognition and prosody without
having to build these components on our own within DIA-MOLE. Our scenario differs from
the VM scenario in that it does not describe a multilingual translation situation, but a
monolingual situation with a human speaking to an appointment scheduling system. This
system could be e.g. a dentist's telephone servant. Consequently, our scenario of a spoken
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dialogue system for appointment scheduling lies in the tradition of natural language
frontends.

3.1 . Analysis and Modelling of the Domain Structure

3.1.1. A First Model of the Functional Structure for Appointment Scheduling

An important precondition for our approach is the existence of a domain and task model.
They will allow us to interpret the intention of the communcative agent's utterances. As
argued above, domain and task model are usually part of the background system and are
thus already provided. Nevertheless, it is not always possible to simply use these models,
especially not the task model, because the structure of interactive problem solving may be
different from automatic problem solving.

When we started working on the VM domain, a compact domain model was not available,
so we had to do this work on our own. Using the modelling method KADS [Bre86] we first
did an analysis of the problem and a typical problem solving method for that domain. In a
first step we neglected the fact that appointment scheduling is an interactive task.

The main problem of appointment scheduling in the VM scenario is to find a time slot for an
appointment. A simple solution structure would include duration, start time and end time,
location, participants and the goal of an appointment. Constraints concerning an
appointment, like its goal, usually are fixed in advance, but if they become the topic of
negotiation, we deal with intertwinned problems. Intertwinned problems are very typical for
real-world applications. [Bre94] writes on the coupling of different problems: "In real-life
applications, a problem type hardly ever comes alone, but rather in chains that reflect the fact
that the conclusion of one problem is a required input to solve a next problem." The analysis
of the VM corpus brought to light that constraints are not necessarily fixed as a first step of
the dialogue, if they become a topic at all. Instead, a typical situation for making explicit
constraints is if some constraints are violated by the interaction partner. This means that
constraints are fixed before the dialogue was recorded, or the dialogue partners have
intuitive ideas of their constraints. Additionally, in some cases previously fixed constraints
are changed during the dialogue, if otherwise no satifying solution could not be found.

If we compare the problem in appointment scheduling dialogues with the definition of
problem types given by Breuker [Bre94], the problem in these dialogues is an assignment
problem, at least when constraints are fixed: An appointment is matched to calendars. The
typical problem solving method for assignment problems is propose-and-revise [Sun94].
Sundin's methodological steps to come to a functional structure for problem solving were
applied to our problem. We will not introduce intermediate steps, but just present the
resulting structure. In figure 4 round boxes are processes, and data are in rectangle boxes.
Components are appointments that have to be scheduled. In our domain mostly one
appointment has to be scheduled giving one unit. Resources are calendars and their entries.
In automatic problem solving theses resources are aggregated to a kind of common calendar.
Partial assignments could be parts of appointment sequences. We do not consider the left-
most partial assignment box. From resources and unit a proposal is computed, which is then
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evaluated according to constraints resulting in conflicts. The proposal is modified to solve
conflicts. Assignment contains the final solution.

Components

Select Unit

Unit

Resources

Aggregate

Resources

Partial
Assignment

Propose
Assignment

Partial
Assignment
(Proposal)

Constraints

Evaluate ModifyConflicts

Assignment

Figure 4: Functional structure of appointment scheduling

3.1.2. Differences between Automated and Interactive Appointment Scheduling

The functional structure of appointment scheduling reflects a solution for automated problem
solving, notably constraint satisfaction. It was the starting point for developing a functional
model of interactive appointment scheduling. There are several differences between
automated and interactive appointment scheduling that forced us to develop a new task
model:

• While automated problem solving would consider all dimensions of the solution, i. e.
time and location simultaneously, in interaction a solution is refined step by step,
which means that all dimensions are negotiated successively.

• Automated problem solving considers all solutions at once (there is no cycle in Figure
4), while in interaction all solutions are tested subsequently, and conflicts are build up
incrementally.

• There is no aggregation of resources in interaction as every partner keeps his own
calendar. Instead of aggregation there is propose-and-revise.

• There are interaction control acts like the typical demand for evaluation after a partial
assignment.

• Besides cyclic refinement during propose assignment, we found explicit stating of
local constraints or focus, like "let us try the 3rd week, what about the
seventeenth...". The structure of human appointment scheduling integrates the method
hypothesize-and-test.

• Constraints and resources are never absolutely fixed in human problem solving.

3.1.3. A Functional Model of Interactive Appointment Scheduling

According to the differences between automated and interactive appointment scheduling, we
modified the functional model resulting in the model in figure 5. Distribution of all
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Figure 5: Functional structure of interactive appointment scheduling.

processes to two dialogue participants is the major change. Resources and other data fields
each were assigned to both participants, too. Only unit containing one appointment that shall
be scheduled and assignment which is the final solution are common data. Following this
strict model, interaction would happen only via partial assignment, and after a proposal, the
other dialogue participant is asked to evaluate this. In reality, all processes and data could be
communicated. For example, evaluations or conflicts are added to the constraints of the
interaction partner when they are verbalised. Constraints reduce the problem space. They
may consist of preference rules for evaluation or describe plans for the choice of further
proposals and may be relaxed during modify. Furthermore, it is possible to modify
resources or, in other words, the calendar.

The question in which data box to store information coming from a dialogue participant is
not central at this point and would be more interesting for building user models. Here we are
interested in the information flow and the move through the functional model. All dialogues
and almost all the turns follow the propose-evaluate-modify cycle. So we would investigate
these processes a little bit more. An analysis of the dialogues from the corpus shows that
these processes are not always trivial. They may have an internal structure or at least there is
a set of alternative realisations.

propose assignment

This process serves to introduce a working hypothesis or a suggestion. Working
hypotheses and suggestions are dependent on each other in that a hypothesis always denotes
the next bigger unit, which comprises the suggestion. Reversely interpreted this means that
every suggestion comes along with an implicit hypothesis.
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evaluate

Evaluate means an acception or rejection according to the own calendar. In case of
acception, there may be further modification in modify. In case of rejection, the whole
hypothesis may be evaluated, i. e. checking all alternatives within that hypothesis against the
own calendar. Acception may also be implicit by repeating the actual suggestion, or by
adding further facts, or by further specification. Repetition may also secure understanding.

modify

In case of acception a suggestion may be further specified and thus result in a new
suggestion, or in case of a fully specified suggestion an acception indicates a final fixing. A
specification without a previous evalulate is an implicit acception.

If a suggestion was rejected, it may be modified without changing the working hypothesis
leading to a new suggestion. If the working hypothesis should be rejected, it must be
modified.

If it is not possible to change the working hypothesis or suggestion any more, constraints
may be modified, or there may be a demand to the dialogue partner to change his or her
calendar or constraints.

It is also possible to do nothing within modify and to return initiative back to the dialogue
partner.

3.1.4. Implications for our system

Knowledge about the functional structure of interactive appointment scheduling and about
subprocesses is an important guide for the development of processes in the avised spoken
dialogue system. The major factors that guide understanding in dialogues from this corpus
lie within the propose-evaluate-modify cycle. It is important to understand explicit acception
or rejection, and to interpret the meaning of a suggestion in relation to the domain, i. e. the
calendar. Correct interpretation also allows to recognize implicit evaluation. Every
suggestion comes along with a working hypothesis that could be seen as a domain context
and that supports interpretation.

Suggestions in our corpus are mainly date and time expressions, but there are some location
suggestions, too. The structure and meaning of date and time expressions may be rather
complex, thus they are a real challenge for parsing and correct interpretation. Parsing of
explicit evaluations and local expressions in the VM corpus are comparatively simple.
Consequently, the recognition of date and time expressions was the major task for parsing
and semantics.

Conflicts are reasons for rejection, thus mentioning a conflict is an implicit rejection. From
the point of view of a spoken dialogue system that makes appointments, it is not necessary
to really understand and fully process the reasons given for conflicts. It is sufficient if the
system recognizes that there is a conflict and when this conflict holds.
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The implication for our system is hence that we have to develep domain specialists for

• attitudes that express explicit acception or rejection

• date and time expressions and their interpretation according to the domain and to
dialogue situation,

• locations, and

• conflicts.

3.2 . Domain Specialists: Parsing and domain-specific meaning
interpretation

The main task of the parser and its integrated or subsequent processing of semantics and
pragmatics is to indentify those basic units that fit into the domain model. Two major
reasons lead us to the decision to apply partial parsing:

• Several attempt to process a complete parse over spoken real world utterances failed.
It is more or less impossible to describe a grammar for spontaneously spoken
dialogues, especially if we consider a certain amount of errors from the word
recognizer.

• For further processing and for adequate system reactions it is not necessary to fully
understand and parse an utterance, but it appears to be sufficient to identify and
correctly process those islands of important meaning which are central elements of the
domain model.

As a conseqence, we apply some partial parser to each turn in a dialogue. Our parsers are
independent from each other and units they recognize may not overlap. This technique may
be unsufficient in more complex domains, but it is adequate for dialogues similar to our
corpus (cf. 2.1).

In order to be able to decide about the structure of date and time expressions, it is sometimes
necessary to interpret the meaning of parts of a parse. For this reason, we decided to
intertwin parsing and meaning analysis. The combination of a partial parser with its specific
meaning analysis is what we call a domain specialist. Consequently, the task for every
domain specialist is to extend units a far as possible, and as long as they are not semantically
inconsistent within one unit.

3.2.1. Implementation of a date and time-parser

Most date and time expressions are extremly underspecified and could only be
disambiguated by using domain knowledge, i. e. the calendar and with help of the domain-
context model described below.

The parser was implemented using DCGs in Prolog. For a real application, a bottom-up
parser should be used, but as long as processing time of our prototype is shorter than real-
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time, we do not worry about the formalism. The parsing formalism is not of central concern
to our approach.

As a result, the date and time parser returns unit boundaries, a feature matrix that contains
those basic notions that were part of the parse string, like weekday(Monday), and an
interval-oriented representation of the interpretation. For the simplicity of algorithms and the
speed of computation it appears to be easier to expand every expression to sets of intervals
and join or intersect these intervals. The use of an interval representation for processing time
expressions has been shown by many applications using Allen's time logic [All83]. On the
other hand, interval sets do not allow to reconstruct what has really been said, so we keep
both representations. This is notably necessary for distinguishing a repetition of "13th
April" following a suggestion "13th April" from an addition of knowledge like "Friday", if
both denotes the same time interval.

The implemented prototype actually processes only absolute time expressions4. This is not a
strong restriction, because relative date and time expressions are seldom compared to
absolute time expressions in that corpus, and some of them even could not be interpreted.
But a meaning interpretation of relative time expressions seems easy, if the actual date and
time, or the exact specification of a suggestion, is known. Relative date and time
expressions always relate to the actual suggestion and possible values are restricted to the
domain-context.

A complex phenomena of date and time expressions are sequences like "every third Tuesday
in a month". By using time interval sets, these expressions are correctly interpreted.

Time Parser

The time parser recognizes utterances of points in time as well as time intervals. Time points
may be expressed with fuzzy values, which are usually a result of coordination in German
(e.g. "um acht, halb neun", which might be translated to "at eight up to half past eight").
Open ended time intervals (before or after) comprise one point in time, while range interval
(from-to, between etc.) comprise two points in time. Of course intuitive interval expressions
(morning), and their modifications (late afternoon) are processed, too; their meaning is fixed
in the domain model.

Date Parser

The date parser recognizes of course year (numbers), months (name), weekdays (name),
dates (number of day in a month), but also month numbers (number of month in a year),
weeks in a month (e.g. third week of april, last week of april), weeks in a year (e.g. 34th
week), and absolute day numbers (day in a year). These basic date expressions may be
more or less arbitrarily combined, as far as they make sense.

4 At this point I would like to thank Jan Amtrup for providing me with a small grammar for date
expressions which he and Andreas Hauenstein wrote for the VM corpus. I could not use that grammar,
because its structure was not suited for being intertwinned with domain-specific meaning interpretation,
but it was helpful because it included further phenomena within time expressions, so that they are covered
by our parser now.
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Evaluation

The date and time parser correctly recognizes and interprets, i.e. recalls about 95% of all
absolute time expressions in the corpus.  Precision5 is almost 100%. A decrease of the word
recognition rate from 100% to 90% leads to a 93% correct interpretation (recall) of date and
time expressions. This shows that the parser is to some degree robust against errors from
the word recognizer. In all but one cases, errors from the word recognizer that did affect the
meaning interpretation led to a loss of information, i.e. a more general interpretation, but
errors did not lead to a wrong interpretation.

Figure 6: A set of time intervals representing the meaning interpretation of a unit without context

One major problem lies within the parsing results and is not a problem of the date and time
parser itself. It is the problem of underspecified date and time expressions. "Thursday" does
not tell us which Thursday this is, and thus this word may denote one of all 52 Thursdays
of a year. This drastically reduces the overall precision measured as hit rates in a calendar
made by a human interpreter following the dialogue. The parser with its integrated meaning
interpretation is not capable to disambiguate this. Disambiguation is subject of subsequent
processes. We decided to return the set of all time intervals denoted by "Thursday", thus the

5 Precision is here the number of time expressions, that were correctly recognized minus recognized word
sequences that are no time expressions divided through the total number of time expressions and to get
percentage multiplied with 100.
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Figure 7: A set of time intervals representing the meaning interpretation of a unit after context restrictions

parsing result is a set that contains the solution. Figure 6 shows a window of the date and
time parser visualizing the meaning interpretation of the actual unit "den Donnerstag".

3.2.2. Using a dialogue context model for semantic disambiguation

When talking about dialogue context, we consider just one aspect of discourse: moves in the
domain. As we have argued above, every suggestion comes along with an implicit working
hypothesis. This hypothesis is the domain-specific dialogue context that will help us to
disambiguate results from the parser.

The dialogue context also has a twofold representation, just like the parse results: The first
representation is the set of all possible intervals (e.g. 42nd week, April) that can be
intersected with the result of a date and time parse (e.g. Monday) yielding an interpretation
that is a more restricted than the original interval. Additionally, there is a feature-based
representation that helps to denote context. The feature-based representation is maximally
specified, which means that it contains all features denoting intervals which comprise the
most specific interval. The feature hierarchy describes levels of specificity. With these two
representations it is easy to test whether a suggestion lies within the actual context and on
the appropriate level of specificity or whether the context must be shifted. Figure 6
compared to figure 7 shows the utility of a domain context.

The application of the context model to disambiguate parse results was a major break-
through in the interpretation of the meaning of date and time expressions and shows the
importance of domain knowledge and of appropriate domain models for understanding and
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processing of natural language in restricted and task-oriented domains. Figure 8 shows the
results of the analysis of the best-word-path output from 10 appointment schedulings from
the VM (Blaubeuren) corpus. The first line shows the number of units with date and time
expressions, while the second line contains the number of time intervals that is returned by
the parser. This means that as an average for every time expression the parser generates
about 30 possible time intervals (3055%) thus having a large ambiguity and a very low
precision. Using context, the ambiguity could be reduced to the factor 2.3 or 237%.
Comparing the number of intervals without and with context disambiguation (last column),
an amount of 7.8% remains after context disambiguation. But more important for
understanding is the number of non-ambiguous interpretations that could be achieved using
the context model. From the date and time expressions recognized by the parser, 25.6%
could be interpreted non-ambiguously. When applying context disambiguation, 84.5% of
the date and time expressions have a unique interpretation.

absolute % relative % relative
numbers to line 1 to line 2

Date and time units recognized by parser: 129 100.0%
Time intervals returned by parser: 3941 3055.0% 100%
Time intervals with context disambiguation: 307 237.0% 7.8%
Non-ambiguous interpretations without context : 33 25.6%
Non-ambiguous interpretations with context : 109 84.5%

Figure 8: Reduction of meaning interpretation ambiguity when using domain-specific dialogue context

3.2.3. Parsing explicit attitude expressions

To identify attitudes, we just used a keyword spotter, which provides sufficient and reliable
information.

3.2.4. Parsing location expressions

At the moment we use very simple parse structures and keyword spotting to parse location
expressions. This leads to satisfactory results in our corpus, because location expressions
are simple there.

3.2.5 Parsing conflicts

Temporarily, keyword spotting is applied to identify conflicts, and results are good, but this
solution is very unsatisfactory for a larger amount of data since conflicts differ greatly. We
intend to implement a meaning interpretation of what constitutes a conflict, based on an
ontology.

3.3 . Prosodic Information and Segmentation

Although a turn in a dialogue is a natural unit, turns often are a sequence of different
segments each having its own function within the dialogue. We cannot use grammatical
information to divide turns into segments, because spoken language often comprises non-
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grammatical parts and - again - there are no complete parsers. Prosodic information provides
information for segmentation. But it also provides information on sentence modifiers and
accents.

3.3.1. The role of prosodic information for dialogue processing

If one is not familiar with prosody, one might suppose that prosodic information, notably
accent, would also mark important content in a turn, but it turns out to be the opposite.
While keywords from the domain are not accentuated, words expressing acception,
rejection, negation or question are accentuated. Thus accent mainly provides information on
social interaction. Recently, first results on the recognition of a prosodic focus showed, that
it marks pragmatically important words [Els96]. Prosodic focus has not yet been integrated
into DIA-MOLE.

<P> ja prima     dann lassen Sie uns   doch noch einen Termin
        L+H* H-H%       H*           L-                  H*
             B3                      B2
        PA              NA                               PA

ausmachen     <P> wann w"ar's Ihnen denn recht     <P> <#Klicken> <P>
          L-L%                  H*         L*  H-H%
          B3                                   B3
                                NA         PA  ?

Figure 9: Result of a manual prosodic transcription6

We use prosodic information in two ways: for segmentation and for tagging segments with
information on sentence modifiers. Figure 9 shows the result of a manual prosodic
transcription following [Pie80, Uhm91, Sil92, Fèr93, Rey94]. In contrast to those
symbolic data, the output of an accent recognising system provides time intervals in which
an accent occurs with some confidence value. There are certain differences between manual
transcriptions and the output of a prosody recognizer with time boundaries and probability
values (cf. figure 2), which might result from human interpretation within the manually
tagged data. For an engineering approach to a spoken dialogue system, it is indispensible to
use only automatically derived data. Prosodic data contain accent, phrase boundaries
(B0,B2,B3,B9), and sentence modalities continuation, question, assertion [Str95].

When analysing prosodically labelled dialogues, we realized that for further processing not
these labels themselves are useful, but combinations of them as well as their relation to
information from other knowledge sources. B0 - word boundaries, B9 - non-grammatical
phrase boundaries and B2 - intermediate phrase boundaries were irrelevant for our purpose.
B3 - full phrase boundaries on their own appeared not to be useful either to get meaningful
segments of a turn - there are too many B3 boundaries. If only those B3 are considered that
appear together with some sentence modality events, the information content of this
combination concerning useful segment boundaries is much higher.

6 H* is a high level accent, L* is a low level accent, % marks the end of a phrase, B3 are phrase boundaries,
PA are phrase accents and NA are secondary accents
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Yet again, there are also too many sentence modality events, to process them. So we
decided only to consider those in combination with B3. Furthermore, we modified the
interpretation of continuation. Figure 10 shows those prosodic events that we add as
prosodic modifiers to the stream of words. Only those data events are considered with a
probability higher than 0.5 are considered.

Raw data Prosodic Events
phrase boundary B3 + continuation -> nothing
phrase boundary B3 + assertion + accent -> <continuation>
phrase boundary B3 + query -> <query>
phrase boundary B3 + assertion -> <assertion>

Figure 10: Modification and interpretation of prosodic data

3.3.2. Rules of segmentation

Our prosodic events are sufficiently rare and well placed, so that they may serve as an
information source for turn segmentation. This does not mean that each prosodic event leads
to a segment boundary. Sometimes prosodic events tend to break apart date and time
expressions or they would produce segments without any useful meaning. We developed
the following tentative strategy to segmentation:

Prosodic events that lie within some unit boundaries are neglected because units were
already recognized as being meaningful by the domain specialist. Then we combine to a
segment a series of units that are recognized by a parser, up to a prosodic event after one
unit. We look further, skipping non-domain-relevant information until the beginning of the
next recognized unit or until the end of the turn. The last prosodic event found in this
sequence is adopted as segment boundary and leads to a prosodic tag for that segment.
Figure 11 shows the stream of words of turn n002k002 with integrated prosodic events.
Looking at the text of unit 5, one can see that the prosodic event lying within the unit
boundaries is not considered any more.

Figure 11: Turn text with prosodic events and dropping them within one unit

In most cases this works well. There are some cases, notably with accentuated connectives
in a turn, where this strategy fails, but it is less than 5%. These errors would disappear
when recognising connectives as own units with meaning. We did not address this yet,
because it concerns inter-segmental meaning.

Failure means that the segmentation module produces segment boundaries that would have
not been made by humans. We compared our segments with a human segmentation that was



FBI-HH-B-191/96 27  Dia-MoLE

built up in the context of RST labeling. The person was advised to apply RST even to
subphrases level, so his segment are smaller and sometimes even break units recognized by
the date and time parser. Nevertheless, most of the automatically derived segment
boundaries meet exactly boundaries set by the student.

Figure 12 shows two manually segmented turns, and figure 13 contains the same turns
segmented by the system. The second dialogue contains one of those typical errors ("weil
ich").

guten Tag Herr Dingler (hello Mr. Dingler)
erinnern Sie sich noch wir m"ussen einen Termin ausmachen (do you remember, we have to
schedule an appointment)
ich w"urde vorschlagen (I would suggest)
wenn ich hier auf meinen Terminkalender schaue (if I look in my calendar)
am Dienstag den neunten (Tuesday ninth)
das w"are mir recht (would be all right)
am Nachmittag (in the afternoon)

guten Tag sch"onen guten Tag Herr Schaaf (hello hello Mr. Schaaf)
leider pa"st es mir am neunten "uberhaupt nicht (I am sorry, the ninth does not fit)
weil ich vom neunten bis zum elften au"ser Hause bin (because I am not here)
wir m"u"sten einen andern Termin nehmen (we should try another date)
w"urde Ihnen der sechzehnte passen am Nachmittag (what about the sixteenth in the
afternoon)

Figure 12: Students segmentation for RST-tagging

11 8 0 5930 guten Tag Herr Dingler <Weiterfuehrung> <nib> erinnern Sie sich noch
wir m"ussen einen Termin <Aussage> ausmachen

12 8 5930 10360 ich w"urde vorschlagen wenn ich hier auf meinen Terminkalender
schaue am Dienstag den neunten <Aussage>

13 8 10220 12210 <Weiterfuehrung> das w"are mir recht am Nachmittag

14 9 0 5520 guten Tag sch"onen guten Tag Herr Schaaf leider pa"st es mir am
neunten "uberhaupt nicht weil ich

15 9 5520 8230 vom neunten bis <Aussage> zum elften <Aussage> au"ser Hause bin
<Frage>

16 9 8230 12600 wir m"u"sten einen andern Termin nehmen w"urde Ihnen der sechzehnte
passen am Nachmittag

Figure 13: Automatic segmentation

To further validate our segmentation, we compared them with segments made for dialogue
act labeling in the VM project [Jek95]. At the moment this has been done manually for
exactly one dialogue, but in the future this should be done automatically. Results of this
comparison are:

• In 32 turns out of 59 turns segments are identical.

• Furthermore, both segmentations contained

– 18 equally placed segment boundaries

– 27 segment boundaries in VM but not in DIA-MOLE (for an example see Figure 14)

– 26 segment boundaries in DIA-MOLE but not in VM (for an example see Figure 15)
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Differences in segment boundary placement can be explained in terms of different factors.
While VM segmentation is mainly concerned with identifying single speech or dialogue acts,
we allow multiple basic acts to be in one segment, as long as their is no phonetic evidence
for a boundary and as long as they all come from different domain specialists. Segment
features that can be seen in Figure 14 and 15 are explained in the following section.

<P> ja prima , @(FEEDBACK_ACKNOWLEDGEMENT AB)
dann lassen Sie uns doch noch einen <!einn> Termin ausmachen <P> . @(INIT_DATE AB)
wann w"ar's Ihnen denn recht <P> <#Klicken> <P> ? @(REQUEST_SUGGEST_DATE AB)

0 0 290 3720 [attitude(POSITIVE), assignment(ASSIGNMENT)] [phonMod(<Frage>)] ja
prima dann lassen Sie uns doch noch einen Termin ausmachen wann w"are
es Ihnen denn recht

Figure 14: Segment boundaries in VM but not in DIA -MOLE

<#Klicken> <P> gut <A> sollen wir's dann gleich am Montag <A> den<Z> dritten Mai machen
? <P> <Schmatzen> vielleicht um halb vier <#Klicken> <P> ?
@(SUGGEST_SUPPORT_DATE AB)

16 10 640 970 [attitude(POSITIVE)] [phonMod(<Aussage>)] gut <Aussage>
17 10 1240 5770 [value(alternative), specificity(keep)] [phonMod(<Frage>)] sollen wir

es dann gleich am Montag den dritten Mai machen <Frage>
18 10 6210 6910 [value(same), specificity(specify)] [phonMod(<Frage>)] um halb vier

Figure 15: Segment boundaries in DIA -MOLE but not in VM

3.4 . Assigning features to segments

Before being able to classify segments and to ascribe some kind of speech act to them, we
have to assign some features to each segment. The implementation of prosodic feature
assignment is very easy: We just use as a feature and value the last prosodic event that could
be found in a segment.

Domain feature assignment is more complex. One aspect of the domain features is the
attitude which could be directly taken from the result of the attitudes domain specialist.
Comparing a suggestion with the previous suggestion and the actual context leads to two
other features: specificity marks whether a suggestion is on the same level of specificity like
its predecessor (e.g. Monday -> Wednesday), or whether it is more specific (in the
morning) or general (April). value denotes whether the hierarchy in the context has been
changed (e.g. if we move from Monday 4th to Tuesday 12th, we also change the week).

attitude (POSITIVE | NEGATIVE)
location (LOCAL | GLOBAL)
conflict (CONFLICT)
value (SAME | NEW | ALTERNATIVE) (date and time)
specificity (SPECIFY | GENERALIZE | SAME) (date and time)
assignment(ASSIGNMENT)
phonMod (FRAGE | AUSSAGE | WEITERFÜHRUNG)

Figure 16: List of segment features that are possible in this implementation
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4 . EVALUATING LEARNED DOMAIN-SPECIFIC
DIALOGUE ACTS

4.1 . Investigating the plausability of our approach

In a first experiment, we applied the conceptual clustering algorithm COBWEB [Fis87] to
tagged segments from 3 appointment schedulings from the Blaubeuren corpus of VM.
Implemented segment features were attitude, value, specification and phonMod. COBWEB
incrementally builds up a classification tree. In this small experiment we wanted to test
whether the learning algorithm produces meaningful classes at all. We kept it small because
an analysis of the classification tree was very work-intensive at that stage: All segments had
to be reproduced, and one had to ascribe some meaning to classes by analysing all segments
within their dialogue context. Although we should have considered more information by
adding some more domain specialists (e.g. for greeting and conflicts), with this prototype,
we were already able to show that profound interpretation of domain meaning and prosodic
information will be sufficient to learn meaningful, domain-specific speech acts. We obtained
the following similarity classes of domain-specific or at least task-specific dialogue acts on
the third level of the binary tree (Figure 17). The percentage distribution of segments into
classes is given. The numbering system in the first column indicates the hierarchy.

1.1 24.4% Assurance of understanding
1.2 31.2% Confirmation, objection and suggestion which all keep

the actual context
2.1 20.0% Asserted alternative suggestions
2.2 24.4% Alternative suggestion that keep the level of specificity

or that generalise

Figure 17: Similarity classes of segments from experiment 1

As mentioned in the introduction, there are many theories for structuring discourse. As we
have several dialogues from the our corpus tagged with RST, we wanted to check whether
there are some correspondences between learned classes for domain-specific speech acts and
RST relations. Although RST tags were subject to human interpretation, the following
correspondences could be observed:

• 2/3 of the nuclei of the alternative relations start from the class of asserted
alternative suggestions,

• 3/4 of the satellites of the alternative relations lie within non-asserted
suggestions,

• all nuclei of justification relations lie within the class 2 of alternative
suggestions,

• and half of the justification satellites are in class 1.1

Figure 18: Correspondence between RST-relations and DDA classes from Figure 17

We verified our results in a second experiments with 10 appointment schedulings from the
Blaubeuren corpus. The classes learned by COBWEB are a little bit different compared to



 Dia-MoLE 30 FBI-HH-B-191/96

those from experiment 1 and the total number of segments is big enough for a finer-grained
analysis (Figure 19). Again these classes were checked against RST-relations. There was
significance for the correspondences in Figure 20.

1.1.1 22.8% More specific suggestions, Repetions, Generalisations
1.1.2 15% Specifications
1.2.1 6.4% Acception with own suggestion and query for confirmation
1.2.2 2.9% Suggestions with query for confirmation
2.1.1 10.7% Alternative suggestions with query for confirmation
2.1.2 22.1% Alternative suggestions
2.2.1 8.6% Acception with query for confirmation / Rejection
2.2.2 11.4% Acception

Figure 19: Similarity classes of segments from experiment 2

• 3/4 of nuclei of the alternative relation are within class 2.1, more than 1/2 in
2.1.2. (the other 1/4 lies within class 1.1)

• allmost all justification relations are connected either to class 1.1 or class 2.1.
Both classes often have an intra-segmental justification relation.

• most of the nuclei of the justification are connected with class 2.1, while most of
the satellites are connected to class 1.1.

• all nuclei of the summary relation are within class 2, while all satellites are
within class 1.1.1

Figure 20: Correspondence between RST-relations and DDA classes from Figure 19

These correspondences gave us the impression that the interpretation of classes seems right,
and we postulate that a sophisticated domain interpretation in combination with prosodic
information is the key to understanding and structuring dialogues.

For the following experiments, we added domain specialists for conflicts, assignments and
location. We implemented the improved and extended learning algorithm with all the
features described in 2.4.

4.2 . Validation by DDA interpretation and comparison with
VM-dialogue acts

Figure 21 shows the segment hierarchy learned from 10 appointments made in 205
segments. The probability of 1.0 was assigned to all features. One parameter used in the
learning phase was the maximal equality boundary set to 0.9. This means that if a case is
integrated into a class yielding a category utility that is higher than the maximal equality
boundary value, it is not further integrated into any subclass.

Before automatically labeling segments with class names, all segments have again to be
classified using the complete hierarchy. For this classification some other parameter apply,
which were described in detail in section 2.4. They hinder the algorithm to return too
specific classes. The minimal case number is 9, maximal case prediction is set to 0.8, and a
good prediction gain is 0.5. With these values, all segments are classified into 15 classes.

Finally, segments associated to these classes were compared with manually labeled dialogue
acts from the VM project (see [Jek95] and the hierarchy in Appendix B). Although their
number of segments on the same dialogues is with 220 very similar to our number of 205,
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segment boundaries are not identical (see 3.3.2), and words may be different because of
errors in transcription or word recognition. For this reason, we implemented a word
sequences synchronizer and a comparison algorithm that considers overlapping segments
between both segmentations. An overlap-matrix table is shown in Appendix A. It is
apparent that the number of processed cases is not yet high enough to make statistically
well-founded conclusions, nevertheless we are able to provide an interpretation of the
classes learned by analysing their features, and we point out some frequent relations to VM
dialogue acts that are marked by capital letters:

• class 4540: It consists of prosodically unmarked positive evaluations without any
domain information. It is evident that these segments mainly correspond to
ACCEPT_DATE or CLARIFY_ANSWER.

• class 6756: Explicit positive evalutions without domain information, but in contrast to
4540 prosodically marked as assertions. Correspondence again mainly to
A C C E P T _ D A T E  a n d  C L A R I F Y _ A N S W E R ,  b u t  a l s o
FEEDBACK_ACKNOWLEDGEMENT. This class contains also most GREET and
THANK_INIT, which are positive expressions without any domain information.
Standard greeting expression have not been analysed by a domain specialist and are
not added as features to segments in DIA-MOLE.

• classes 6565, 6632, 5424, 6659, 6674: These classes have in common that segments
perform some actions in the domain. These actions are repetition, generalisation or
specification of a suggested date, but not alternative suggestions. In contrast to the
group of alternative suggestions (6766, 6260, 6486, 6780) this group contains many
segments corresponding to ACCEPT_DATE and REJECT_DATE. Rejections are
indirectly given by date information.

• class 6565: A specified date is supported by prosodical query and assertion
marke rs .  Asse r t i on  ma in l y  suppo r t  a  sugges t i on
(SUGGEST_SUPPORT_DATE), while query markers indicate a query for
assent (an implicit REQUEST_COMMENT_DATE) or a query for approvement
of given reasons in the case of rejection of a specified date.

• class 6632 has no prosodic markers and indicates sole domain information.

• class 5424: Specification of a date with explicit evaluation. If the evaluation is
positive, there is a correspondence to CLARIFY_ANSWER and
CLARIFY_STATE, if it is negative segments correspond to REJECT_DATE.

• class 6659* contains all those segments that could not be classified further
down, i.e. those that belong to 6659 without those from 6674. For this reason
this class is marked with a asterisk. All segment are marked as assertions and
repeat previously mentioned dates. This class can be divided into two distinct
subclasses: If the repetition is on the same level,  segments overlap with
SUGGEST_SUPPORT_DATE; if repetitions are more general, they correspond
to REJECT_DATE. There are no explicit evaluations in 6659*.
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Number of cases processed: 205
root <-- node_4540 = 12
     <-- node_6648 = 66 <-- node_6565 = 15 <-- node_1653 = 4
                        <-- node_6632 = 19 <-- node_4096 = 6
                                           <-- node_6066 = 4
                                           <-- node_6640 = 7
                        <-- node_6659 = 32 <-- node_5424 = 9 <-- node_4533 = 3
                                                             <-- node_5431 = 5
                                           <-- node_6607 = 8 <-- node_6205 = 4
                                                             <-- node_6613 = 4
                                           <-- node_6674 = 15 <-- node_4031 = 5 <-- ...
                                                              <-- node_5475 = 4 <-- ...
                                                              <-- node_6686 = 6
     <-- node_6756 = 20 <-- node_2323 = 2
                        <-- node_6290 = 15
     <-- node_6766 = 39 <-- node_566 = 2
                        <-- node_5828 = 6
                        <-- node_6260 = 9
                        <-- node_6486 = 10 <-- node_2100 = 2
                                           <-- node_6495 = 8
                        <-- node_6780 = 12 <-- node_6136 = 3 <-- node_6145 = 2
                                           <-- node_6541 = 4 <-- node_6546 = 3
                                           <-- node_6788 = 5
     <-- node_6870 = 68 <-- node_6086 = 9 <-- node_2731 = 3
                                          <-- node_6097 = 5 <-- node_6104 = 3
                        <-- node_6806 = 42 <-- node_5760 = 9 <-- node_4856 = 4 <-- ...
                                                             <-- node_5363 = 2
                                                             <-- node_5771 = 2
                                           <-- node_6815 = 33 <-- node_1296 = 3 <-- ...
                                                              <-- node_4276 = 5 <-- ...
                                                              <-- node_5964 = 7 <-- ...
                                                              <-- node_6850 = 5 <-- ...
                        <-- node_6881 = 17 <-- node_5714 = 5
                                           <-- node_6747 = 6
                                           <-- node_6891 = 6

Figure 21: Learned DDA hierarchy

• class 6674: This class is characterized by repetitions with explicit evaluations.
This may be queries for clarification and their answers, and acception and
rejection of a suggestion

• classes 6766*, 6260, 6486, 6780: These classes have in common that they introduce
alternative suggestions. They hardly correspond to ACCEPT_DATE or
REJECT_DATE, which seems evident, because it does not make sense to introduce a
new suggestion in order to explicitly reject a previous one. The bigger the difference
between a previous suggestion and the alternative the less probable is an acception.

• class 6086: Specified date and time expressions and conflicts let this class significantly
correspond to GIVE_REASON.

• class 5760: Mentioning the task of appointment scheduling combined with explicit
positive evalutions and a prosodic query mark make a correspondence to INIT_DATE
obvious.

• class 6815: This class is very inhomogenous and we have to look into its subclasses.

• subclass 6850: A mixture of date expressions and locations, usually
prosodically marked.
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• subclass1296: Prosodically marked conflicts without any other information

• subclass 4276: Explicitly positive evaluated alternative suggestions after
REQUEST or CLARIFY_QUERY, or as a final ACCEPT.

• subclass 5964: Although it is hard to interpret the feature structure of this class,
most segments correspond to SUPPORT_EXCLUDE_DATE and some to
REQUEST_COMMENT_DATE.

• class 6881: This class comprises most locational information.

In contrast to manually given dialogue act labels, learned DDA classes distinguish for
example explicit and implicit rejection. This means that they do not characterize the
illocutionary force by interpretation, but their illocutionary force relies on acts in the domain
and its task model. It seems that a hierarchy resulting from processing a larger amount of
data will get a finer structure than manual dialogue act labels and perhaps some of these finer
classes will be interchangeable from the point of view of sequences of acts.

4.3 . Evaluation of DDAs by their predictability

In a third experiment we tried to evaluate the quality of the learned DDAs by testing whether
they are well suited for dialogue act prediction. Up to now we could only use nine dialogue
sessions containing 19 appointment schedulings, thus our results are a first attempt and not
very reliable. For prediction we used simple 3-grams.

We will compare our approach with results reported by Reithinger and Maier [Rei95]. They
examined prediction rates on manually labeled dialogue acts in VM, corresponding to those
shown in Figure 14 or 15. For training, they used 41 dialogues with 2538 speech acts, and
the test set contained 81 dialogues. In their test over all turns they reported a hit rate for the
first prediction of 29% and a 45% hit rate within the first or second prediction. Reithinger
and Maier report higher hit rates if they skip all those turns in their test set that are not part of
their main dialogue network and that can occur at any point of the dialogue.

For learning, we used four dialogue sessions n001k, n002k, n005k, n007k, consisting of
120 turns. Input to the Dia-MoLE dialogue-act learner came from a word recognizer with a
word accuracy of less than 90%. Prosody and domain knowledge were added, and classes
of DDAs have been learned with our unsupervised learning algorithm. Classifying again all
segments of these four dialogues in terms of the dialogue act hierarchy yields segments
labeled with DDAs. The sequence of these labeled segments was used to build up a 3-gram
model.

Test dialogues are processed with the same modules and are based on noisy data, e.g. 90%
word accuracy, too, but they contribute neither to the dialogue act hierarchy nor to the
construction of the 3-gram model. In Figure 22, hit rates for different dialogue sessions are
presented. The first column shows the dialogue label (Dialog), the second contains the
absolute number of predictions (Pred), the third column shows the hit rate using the most
probable prediction, and the hit rate in the last column relies on the most probable two
predictions. As we have argued in section 2.5, the dialogue act hierarchy may be over-
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specified that means that some classes which are very similar but which could be well
distinguished by data in spoken language may be interchangeable from the viewpoint of
prediction. For this reason, we generalized both prediction class and dialogue act class
assigned to segments. The hit rate for the generalized predictions are in column 4 for the
most probable prediction and in column 7 for the second-most probable prediction. The fifth
column contains the hit rate for a double generalization.

Dialog Pred 1st 1st̂ 1st̂ ^ 2nd 2nd^ 1st+2nd

1,2,5,7 205 36 39 49 18 20 54
n003k 30 16 16 33 20 23 36
n006k 54 9 14 31 14 24 23
n009k 30 20 20 30 3 7 23
n011k 28 21 25 32 7 10 28
n018k 54 18 22 39 8 13 26

Figure 22: Prediction hit rates in DIA-MOLE

Although Dia-MoLE just reaches about 60% of the hit rate compared to manually labeled
dialogues, results of dialogue act prediction seem promising since the learning set was very
small, and we have used noisy data. We expect better results when having a larger learning
set. This is subject of future work.

At the end we have to make one remark concerning the expressiveness of prediction hit rates
concerning the quality of more or less domain-specific dialogue act classes: In our opinion,
this is a weak measure because it depends heavily on the branching factor in the domain. In
complex domains, there are more branches, and thus there is a lower predictability.
Additionally, prediction is only one application of dialogue acts. The applicability of
dialogue acts in a system environment for several other purposes might engender other
criteria that are more important for evaluation.

5 . CONCLUSION

Our approach to learning dialogue models is influenced by the idea of dialogue engineering
in the context of a spoken dialogue system. In contrast to many other recent applications of
machine learning to discourse or dialogue phenomena [Hir92, Lit94, Sie94, Leh94], we
will not rely on hand-labeled linguistic data, but only on data which can be automatically
generated in such a system. This had two positive effects, first, we avoided the enormous
effort to label dialogues, and as a consequence of this, second we were able to use very
large amounts of data for learning.

A further difference to other approaches using machine learning for discourse or dialogue
modelling is that we did not rely on some given discourse theory with a given set of classes
of dialogue acts or similar kinds of units. Instead, we used machine learning to derive
domain-specific and task-specific classes from a set of example dialogues. These DDA
classes are based on real data that are available in a dialogue-system environment, and on
domain knowledge. Thus a future dialogue component using DDAs will be directly
applicable within this system.
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Preprocesses filter and interpret data yielding some kind of relevant data as segment
features. The engineer's choice of interpreted data and the underlying domain model
strongly influence the DDA hierarchy. We consider this relation between DDAs and the
domain model as an important benefit of our approach to pragmatics engineering in spoken
dialogue systems, although linguists might miss their theories.

The decision which data are relevant at all is subject to human engineering. Consequently,
DIA-MOLE does not allow to invent new information categories in speech data that might be
relevant, because it does not know about other data than segment features. But we think a
high-level domain- and interaction-oriented abstraction is essential for learning domain-
specific dialogue acts at the pragmatic level.

We gave an outline of an architecture for learning dialogue acts within DIA -MOLE and
introduced a first implementation. We think our results look very promising so that we will
add some more domain specialists and apply the learning algorithm to a larger amount of
data. We suppose that using more domain-specific knowledge will improve the
expressiveness of our classes. This will be subject to further research.

DIA-MOLE allows to weigh the relevance of different segment features for learning DDAs.
This has not yet been used and is a possible point for manual intervention by the engineer.
Automatic determination of the relevance could be realised by a meta-learning process that
modifies the relevance parameters and evaluates the resulting DDA hierarchy according to
some evaluation criteria, e.g. compactness.  Another extension to the actual DIA -MOLE
system would be the integration of some means for planning dialogues according to some
automatically deduced model. Meta-learning as well as dialogue planning have not been
elaborated, yet. They may become subject of future research.

Our domain-specific dialogue acts should also be used to improve the word recognizer of
our department by training different language models for each class of DDAs. Additionally,
we want to use our system for investigating the importance of different dialogue and
discourse structures and their coincidence.
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APPENDIX A: OVERLAP MATRIX TABLE
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APPENDIX B: DIALOGUE ACT HIERARCHY FROM THE VM
PROJECT

dialogue act
request_suggest

request_suggest_date
request_suggest_location
request_suggest_duration

accept
accept_date
accept_duration
accept_location

give_reason
clarify

clarify_query
clarify_answer
clarify_state

confirm
deliberate

deliberate_explicit
deliberate_implicit

garbage
suggest

suggest_exclude
suggest_exclude_date
suggest_exclude_duration
suggest_exclude_location

suggest_support
suggest_support_date
suggest_support_duration
sugest_support_location

feedback
digress

digress_scenarion
refer_to_setting

introduce
introduce_name
introduce_react
introduce_position

init
init_date
init_duration
init_location

motivate
motivate_appointment

reject
reject_date
reject_location
reject_duration

thank
thank_init
thank_react

request_comment
request_comment_date
request_comment_duration
request_comment_location


