Fachbereich Informatik der Universitat Hamburg
Vogt-Kolln-Str. 30, D-22527 Hamburg / Germany

University of Hamburg — Computer Science Department

Bericht Nr. 204 e Report No. 204

On Twist-Closed Trios

Matthias Jantzen

FBI-HH-B-204/97
August 1997

Vorgeschlagen durch Recommended by

Prof. Dr. Rudiger Valk and Prof. Dr. Christian Freksa

Abstract

The language theoretic operation twist from [JaPe 87] is studied in connection
with the semiAFLs of languages accepted by reversal bounded multipushdown and
multicounter acceptors. It is proved that the least twist-closed trio generated by
MIR :={ww™™ | w € {a,b}*} is equal to the family of languages accepted in quasi-
realtime by nondeterministic one-way multipushdown acceptors which operate in
such a way that in every computation each pushdown makes at most one reversal.
Thus, Mn(MIR) = M yise(MIR) and this family is principal both as a twist-closed
and as an intersection-closed semiAFL. This is in contrast to the semiAFL of lan-
guages accepted by reversal-bounded multicounter machines in quasi-realtime. This
family is a well known semiAFL which is principal as an intersection-closed semi-
AFL with generator By :={da}a} | n € IN}, see [Grei 78], but is not principal as a
semiAFL. It is here shown that it forms a hierarchy of twist-closed semiAFLs and
therefore cannot be principal as twist-closed semiAFL.

Zusammenfassung

Die in [JaPe 87] definierte Operation twist auf Wortern und formalen Sprachen
wird untersucht in Verbindung mit den semiAFL’s der von umkehrbeschrankten
Keller- und Zahlerautomaten akzeptierten Sprachen. Es wird gezeigt, dafl das klein-
ste, von der Sprache MIR := {ww"™" | w € {a,b}*} generierte twist-abgeschlossene
Trio identisch ist mit der Familie aller Sprachen, die von mehr-Kellerautomaten
in quasi-Realzeit mit umkehrbeschrankten Kellern akzeptiert werden. Daher ist
Ma(MIR) = Muist(MIR) als durchschnitts- und als twist-abgeschlossenes Trio
eine sogenannte Haupt-semiAFL (principal semiAFL). Im Unterschied dazu ist die
Familie Mn(B1), mit Generator By := {a}a@} | n € IN}, der in quasi-Realzeit von
umkehrbeschrankten mehr-Zahlerautomaten akzeptierten Sprachen, vergl. [Grei 78],
zwar twist-abgeschlossen, aber es gilt nicht Mn(B1) = M st By).

1 Introduction

In connection with a representation of Petri net languages by Dyck-reductions of (linear)
context-free sets the operation twist was defined and used for the first time, see [JaPe 87,
JaPe 94]. The definition of this new language theoretic operation is based upon a mapping
from strings to strings which rearranges letters: for a string w = a29---2,_12, the
unique new string is twist(w) 1= 212, 228,-1 - - T Observe, that twist : X* — X" is

a bijection and it’s inverse mapping twist ! (w) yields a unique string v with twist(v) = w.
It follows that for each string w there exists a non-negative integer k& € IV such that
twistk(w) = w. The mapping twist can also be regarded as a permutation of the n
distinct positions for the symbols of a string of length n. As language theoretic operation
twist is generalized to languages and families of languages in the obvious way, see Def 4.

It was shown in [JaPe 94], Th.2.10, that the family Reg of regular sets is closed with
respect to twist. The inclusion twist(Reg) & Reg must be proper since twist(MIR) =

{a?,b*}*, where MIR = {ww™ | w € {a,b}*} is the non-regular context-free set of
palindroms of even length. This observation means, that the regular set {a?,6%}* will
never appear as twist (R) for any regular set R € Reg. Notice, twist ' (MIR) = COPY :=
{ww | w € {a,b}*}. In [JaPe 94], Th.2.11, it was also proved that the family Lo of A-
free labelled, terminal Petri net languages is closed with respect to the operation twist.
Again, twist(Lo) & Lo, since twist(MIR) € Lo but MIR ¢ Lo follows from results

in [Grei 78, Jant 79a] using the decidability of the reachability problem for Petri nets,

proved in [Mayr 84, Kosa 82]. The proof for the closure of Ly under twist essentially

uses a construction that can easily be be modified for showing closure with respect to
1 1

the operation 3. In fact, the two operations 5 and reversal are closely linked with the

operation twist. In conjunction with the usual trio-operations the combination of twist
and product can simulate any (finite) combination of intersection, reversal, and % as
shown below in Lemma 1 and in Theorem 2.11 where a new morphic characterization of
the recursively enumerable sets is given by Re = H(H ™' (twist(lin Cf))) = M yisi(AMIR) .
Similar results are known for principal intersection-closed full trios (see [BaBo 74]) and for
full principal trios, the generator of which is as rich in structure as the twinshuffle language
L7g (see [Salo 81], Chapt. 6, for a condensed presentation. Lrg was there abbreviated
by Lyx). A similar result has been shown by Engelfriet in [Enge 96] for the reverse twin

shuffle language L rrg. However, neither L pg nor Lprrg is context-free.

We will prove, Theorem 2.11, the characterization of the r.e. sets directly in a manner
similar to proofs in [BaBo 74] which nowadays can be viewed as standard methods.

It was proved in[BoNP 74] that the non-full intersection-closed trio Mn(MIR) equals
H(lin Cf Nlin Cf AlinCf), where for families of languages K and £ the wedge is defined by
KANL:={KNL|Ke€Kand L € L}. We will show here that the closure of lin Cf under
twist contains generators for the family Mn(MIR) and that the latter family of quasi-
realtime multipushdown languages is closed with respect to the operation twist, hence

MQ(MIR) — Mtwist(MIR) .

The situation becomes different for the semiAFL of languages accepted by one-way
reversal-bounded multicounter machines in quasi-realtime. This family is a well known
semiAFL which is principal as an intersection-closed semiAFL with generator B; :=
{a?@} | n € IN}, which is not a principal semiAFL, see [FiIMR 68, Grei 78]. |J M(C;) =

>0

Mn(Ch) = BLIND(lin) = U M(B;) = Mn(B1) = RBC(n) is know from [Grei 78].
120

The known situation for these hierarchies is as follows: For all ¢ > 1 we have M(B;) &
M(Biy1), see [Gins 75], M(C;) G M(Ciyq1), and M(B;) € M(C;), shown in [Grei 76,
Grei 78], [Latt 77], [Latt 78, Latt 79] and [Kort 80]. We will in addition show here that
U M(C) = Mn(Cy) forms a hierarchy of twist-closed semiAFLs and therefore cannot
120

be principal as twist-closed semiAFL. Each such semiAFL M (C}) can be characterized as
family BLIND(n) = BLIN D(lin) of languages acceptable by blind k-counter machines
in quasi-realtime (or equivalently linear time), [Grei 78]. Slightly improving a construc-
tion by Greibach we will prove that the semiAFL M(C}%) of blind k-counter languages
is (strictly) included in the family M(Bjg41) of languages accepted in quasi-realtime by
nondeterministic one-way (k+1)-counter acceptors which operate in such a way that in
every computation each counter makes at most one reversal.

2 Basic Definitions

2.1 Definition
Let Reg (resp. linCf, Cf, Lo, Cs, L, Rec, Re) denote the families of regular sets (linear

context-free, context-free, A-free labelled terminal Petri net, context sensitive, arbitrarily
labelled terminal Petri net, recursive, and recursively enumerable languages, respectively).

O

2.2 Definition

Let wy,wy € X*,wy 1= 2122+ %y, and wy := y1y2 - -y, wWhere z;,y; € X for 1 <1 <
mand 1 <j <m.

Then the shuffle wi and the literal shuffle Ly are defined as follows:

neW7ui7vi62*7w1:ulu2"'un7
Wy = V1Vz - Uy 7

w1 Wwwy = { ULUVLUQUY = * = Up Uy,

TIYIT2Y2 T YmYmtl Y, i m<n

w1 W W 1= .
TIYLT2Y2 T YnTpgl - Ty, AL <M

2.3 Definition

Specific languages we consider are constructed using the alphabets I' := {a, b}, T = {E,_E}
and I',, ', specified for each n € IN,;n > 1 by: [y := {a;,0; | 1 <0 <nf, [y = {@;, b |
1 <4 < n}, and the homomorphisms ~, h, h, and h; defined by:

T =

,ifzel A Lifzel
ai,hi(bl) = b; fOI’iEW\{O},

i,lfxEF h(z) = x ,ifzel _(x)::{A ,}fxEE and i

By |w|, we denote the number of occurences of the symbol 2 € ¥ within the string
w € ¥ and |w| := Yyexn|w|, is the length of w.

B {Bi_lm{a?bﬂneﬂ\f} Jifi>2
L {afb} |ne N} | ifi=1
o { Cisywhi(Cy) , ifi>2
! {we{ar, b1}* | |w]e, = |wlp,} ,ifi=1
Dioy whi(Dy) ifi> 2
Di =0 {w e {ar, 0} [wla, = [wle,,
and Yw = wv : |ul|qg, > July,} ,ifi=1
i = {afa}-a}|ne V)
dMIR = {wecw™ |w €™},
MIR = {ww|we ™}
PAL = {w|w=w" wel*}
dCOPY = {wcw|w € {a,b}*}
CcorYy = {ww|wel™}
Lrs = {wE (FUT)* |W:E(w)}
Lprs = {w € (F Uf)* | W = E(wrev)}
twinPAL = {we (TUT)*|h(w) € MIR and h(w) € MIR}

O

Let us repeat the basic notions and results from AFL-theory details of which are to be
found in the textbooks of Ginsburg, [Gins 75], and Berstel, [Bers 80].

A family of languages £ is called trio if it is closed under inverse homomorphisms,
intersection with regular sets, and nonerasing homomorphisms. The least trio containing
the family £ is written M(L). If £ := {L}, then L is a generator of the trio M (L), shortly
written as M (L) and then called principal. A union-closed trio is called semiAFL. Any
principal trio is closed with respect to union and thus forms a semiAFL. If a trio is closed

under arbitray homomorphisms, then it is called a full trio, written M(ﬁ)

A family of languages £ is called an AFL (or full AFL) if it is a trio (full trio, resp.)
which is closed under the operations union, product and IA(Ieene plus. The smallest AFL

(or full AFL) containing the family £ is written F(£) (F(L), resp.). Each full AFL is

closed with respect to Kleene star.

If a trio M(L) (or an AFL F(£)) is in addition closed with respect to one further
operation @® then this family will be called ®-closed and abbreviated as Mg(L) (resp.

Fa(L))-

The language Dy defined above is the so-called semi-Dyck language on one pair of
brackets which is often abbreviated by D], see e.g. [Latt 77, Latt 79] or [Bers 80]. D,
here denotes the n-fold shuffle of disjoint copies of the semi-Dyck language D; and it is
known [Grei 78] that

| M(D:) = Ma(D1) = PBLIND(n).

i>0

The latter family is the family of languages accepted in quasi-realtime by nondeterministic
one-way multicounter acceptors which operate in such a way that in every computation
no counter can store a negative value, and whether or not the value stored in a counter is
zero cannot be used for deciding the next move. This family is equal to the family Ly of
A-free labelled terminal Petri net languages, see [Jant 79a, Grei 78].

The languages (', are the Dyck languages on n pairs of brackets a;, @;, often abbreviated
by D7, see again [Latt 77, Latt 79] or [Bers 80]. Greibach, [Grei 78], has shown that

| M(C) = Mn(Cy1) = BLIND(lin) = |] M(B;) = Mn(B1) = RBC(n).

i>0 i>0

Here BLIN D(lin) denotes the family of languages accepted in linear time by non-
deterministic one-way multicounter acceptors which operate in such a way that in every
computation all counters may store arbitrary integers, and the information on the contents
of the counters cannot be used for deciding the next move. The family RBC'(n) is the fam-
ily of languages accepted by nondeterministic one-way multicounter acceptors performing
at most one reversal in each accepting computation. Hromkovi¢ proved in [Hrom 85] that
quasi-realtime multicounter machines and quasi-realtime partially blind multicounter ma-
chines with a constant number of reversals define the same family of languages, see also

[Jant 79b] and [DuHr 87].

The least intersection-closed full semiAFL Mn(Bj) has been characterized in [BaBo 74]
as the family of languages accepted by nondeterministic on-line multicounter acceptors
which operate in such a way that in every computation each counter makes at most one
reversal. It was there shown that this class contains only recursive sets, i.e. Mn(Bl) C
Rec. Latteux has shown in [Latt 77] that Mn(B;) is the smallest commutation-closed
trio, i.e., if L € Mn(By) then (¢! (L)) € Mqn(B1), where ¢ is the Parikh mapping
¢ 2 —s INP defined by P(w) = (|w|x1,...,|w|x|2|). Latteux, [Latt 79], has also

observed that Mqn(B;) = Mn(B;) G H(linCf ANlinCf AlinCf) .
dMIR, MIR and PAL are well-known context-free generators of the family linCf of

linear context-free languages: linCf = M(dMIR) = M(MIR) = M(PAL). These lan-
guages are precisely the languages accepted by nondeterministic on-line single pushdown
acceptors which operate in such a way that in every accepting computation the pusdown
store makes at most one reversal. And this family is not closed with respect to product

or Kleene plus.

Similarly, the intersection-closed semiAFL Mn(MIR) can be identified with the family
of languages accepted by nondeterministic on-line multipushdown acceptors which operate
in such a way that in every computation each pushdown makes at most one reversal and

that work in quasi-realtime, see [BoGr 70]. This family, however, becomes the set of
recursively enumerable languages if erasing is allowed and was characterized in [BaBo 74]

by Re = Mn(MIR) = M(twinPAL).

2.4 Definition

Let 32 be an alphabet, then twist : 3* — ¥* is recursively defined for any w € 3* and «a €
Y by: twist(aw) = a - twist(w"), and twist(A) == A.

For sets of strings L and families of languages £ the operation twist is generalized as
usual: twist(L):= {twist(w) | w € L} and twist(L):= {twist(L) | L € L}.

O

We see that twist(w) = 212,222,-1 - - w241 for any string w € ¥*, w := zy29 - Ty_12,
where z; € ¥ for all i € {1,---,n}.

Viewed as the permutation 7g,;s: of the n subscripts 1,2,...,n, i.e. the positions of
the symbols that form the string w := 2129 - - - 2,_12, this yields

i) 2-1—1 ,if0<i<[2]
Ttwist\t) = 2(n+ 1— 1/) , otherwise

Twisting a context-free language obviously yields a context-sensitive language. We
have twist(Cf)& Cs and the inclusion must be proper since twist(1) has a semilinear Parikh
image whenever L has this property. Note that twist(L) may not be context-free even for
a linear context-free language L := Ly, or a one-counter language L := L yyn¢. It is easily
verified that twist(Ly,) ¢ Cf and twist(Leoynt) ¢ Cf for Ly, = {a®™b"c"d™ | n,m € IN}
and Leouni = {a®™0™c™d” | n,m € IN}. One verifies twist(C') N {(ad)*(ac)’ (ab)* | 1,5,k €
IN} ={(ad)™(ac)™(ab)™ | m € IN} for C' € {Liin, Leount }-

In order to use the operation % in connection with twist we shall define a slightly

generalzied version of this operation, compare [HoUl 79]:

2.5 Definition

For any string w = 2z 29+ -2, 2; € &, let H{w) := 2125~ £

V|3
—

Hence, 3(abaab) = abaabb) = aba.

2.1 Lemma

Any trio which is closed with respect to twist is also closed under reversal and %

Proof: Let L. C 3¥*,$ ¢ ¥ be a new symbol and f : (JU{$})* — ¥* a homomorphism
defined by f($):=Xand Vo € ¥: f(x) := 2. Then L™ = g~ (twist(f~1(L) N {$}*S%))
where ¢ : ¥* — (X U {$})* is a homomorphism given by Va € ¥ : g(z) := $z. Thus any
twist-closed trio M(L) is closed with respect to reversal.

To express the operation % by trio operations and twist that works for strings of both
even and odd length we have to insert a dummy symbol for those of odd length and
then mark half of the symbols. To do this we use an inverse homomorphism hl_l. By
intersection with a suitable regular set we then can fix the position of the dummy symbol
and the marked symbols.

In detail we define: ¥ := {Z | x € ¥} as a disjoint copy of ¥ and the homomorphism
hi : (BUXU{$H* — X* by: hy(z) := h(T) = aforallz € ¥ and hy(3) := A
Now, for any string w € X*, hl_l(w) may contain an arbitrary number of extra $-symbols
and likewise barred symbols from ¥ at any position. Then K; := A7 (L) N X*{$, A}~
contains at most on extra symbol $ and all and only the barred symbols at the right
hand side. Define new alphabets T' := {(x,y) | « € X,y € X}, T'g := {(«,9) | v € X}
and a homomorphism hy : Iy UT)* — (S UX U {$}H* by ha({z,y)) := ay. Now
Ky = hyM(twist (K1) N (I* UT*Tg) is a set of strings, each of which describes the twist of
a string from K in the projection of both components of the new symbols from I' U I's.

Since the first [%} symbols of the original string w are put into the first component

of the corresponding string from Ky a simple coding will retrieve the string %(w) With

hs : ([UTlg) — X defined by hs((z,y)) := z one obtains (L) := h3(K;). The only
operations we used to define (L) were trio operations and twist so that the lemma was
proved completely.

O

2.2 Lemma

Each twist-closed trio £ that is in addition closed under product is also closed w.r.t.
intersection.

Proof: Let Ly, Ly C X" Ly, Ly € L and I' a copy of X with h : 3 — I being the
bijection between the alphabets. By Lemma 1 Ly"®" € £ and then also Lz := ¢~ (twist(Ly-
h(L2"®")) € L where g : ¥* — (XI')* is defined by g(2) = zh(z) for all 2 € ¥. Obviously
Ls = LiN Ly, and this proves the lemma.

O

There exist families of languages that are closed with respect to the operations twist
and product but not under intersection! The family £;, of languages having a semi-linear
Parikh image, i.e. are letter equivalent to regular sets, is such a family. This is because

this family is not a trio since it is not even closed with respect to intersection by regular
sets! To see this, consider the language L := {ab®" | n € IN} U {b}*{a}* € Ly, where
one has LN {a}{b}* & L.

This observation indicates that it might not be easy to express the operation twist by
means of known operations in abstract formal language theory.

Using simple and standard techniques we can show that the languages MIR, COPY
and their deterministic variants all are generators of the same twist-closed trio M yis:(MIR).

2.3 Theorem

Mtw{St(dCOPY U {A}) — Mtwist(COPY) — Mtwist(MIR) =
Mtwist(PAL) = Mtwist(dM]R U {/\})

Proof:
(a) COPY € Myyist(dCOPY U{A}) follows since COPY is obtained from dCOPY

by limited erasing of the symbol ¢ and it is well known that every trio is closed w.r.t. this
operation.

(b) MIR € M y,i5:(COPY) follows by observing that MIR = twist(COPY'). This can

be shown by induction on the length and structure of the strings involved.

(¢) dMIR € Myisi(MIR), (d) PAL € Muiss(AMIR U {A}), and () MIR € Mise(PAL)
follow from the well known: M (dMIR U {\})=M(MIR)=M(PAL).

(f) dCOPY € My (dMIR): K, := {w$w=¢ | w e {a,b}"i,j
M (dMIR) is easily proved. Likewise, K3 := twist(K3) N ({a,b}{¢})* {$¢} ({3}
M ist (AMIR) and then dCOPY = f(h_l(Kg)) follows with & : {a, b, ¢,@ b}* — {a,
defined by h(a) := a¢, h(b) := b¢, h(c) == $¢, k(@) := $a, h(b) := $b, and f(a) : f(
a, f(b) := f(b) := b, f(c) := c. Consequently, dCOPY € M ys:(dMIR).

Since the mapping twist only performs a permutation of the symbols that form a string
it is easily seen that Re, Rec, and Cs are twist-closed families. The family Mn(MIR) of
quasi-realtime multipushdown languages [BoNP 74, BoGr 78] will be shown to be another
twist-closed family.

2.4 Lemma

The family Mn(MIR) is closed with respect to the operation twist.

Proof: Let L € Mqn(MIR) be accepted by some nondeterministic on-line reversal-
bounded multipushdown machine My, which operates in such a way that in every compu-
tation each pushdown makes at most one reversal and runs in linear time, see [BoNP 74].
In order to accept K := twist(L) we use machine My, and add one further pushdown store
to obtain machine Mg that accepts K as follows: My reads the symbols at odd positions

of an input string w € K, beginning with the first symbol of w and behaves on them
exactly as the machine My. Beginning with the second symbol of w the symbols at even
positions alternatively are pushed onto the new pushdown. After having read the last
symbol of the input string the symbols from the pushdown are popped and now treated as
input for the machine My. Mg accepts if the new pusdown is emptied and My, accepts its
input twist ~!(w). Hence, My accepts twist(L) and operates on each pushdown with only
one reversal. It must be observed that My works in linear but not in quasi-realtime. That
this is not a loss follows from a result in [BoNP 74] stating that the class Mn(dMIR N {\})
is closed with respect to linear erasing homomorphisms.

O
Lemma 4 showed M s (dMIRU{A}) C Mn(dMIRU{\}) and by the following re-

sults we will be able to prove equality of these two classes. Since the family linCf=
MAMIRU{A}) =M(MIR) is not closed w. r. t. product it will not simply follow from
Lemma 2 that My (dMIR U {A}) is indeed intersection-closed.

2.5 Lemma

dMIR - dMIR € M ise(dMIR U {)\}) for dMIR := {w | w € dMIR}.

Proof: Let Ly = {cM wel2vesv® B wes | w e {a, b} v € {@, b} ky, ko, kg €
IN\A{0}} € linCf = M(MIR) C Myyise(MIR). Then let Ly € Myyise(MIR) be defined
by Ly = twist(L1) N Ry, where Ry = {cies} - ({c1}{a,0})" - {crca} - ({a,0}{ca})™ - {caca} -
({c2}{@, b, c3})*{caca}. One observes Ly = {c1c5c1w1c1w3 - - - €1W, €1 C4W1 C4W3 - + + C4W,, CoCo -
C4C2V1Ca * + Uy €oC3CoV CoUp—t - - - €201 | w; € {a,b} and v; € {@,b}} and from this Lz :=
{$1w$2w$3v$4v7’6“$5 | w e {a,b}* and v € {a, 5}*} € Myyist(AMIR U {\}) follows easily.
By a similar technique we will finally get the stated result:

Let Ly = {Mw2w$k v$0m$s | w € {a,b}* and v € {@,b}*, ky, ko, ks € IV \ {0}} €
M(L3) and Ly := twist(L4)N Ry, where Ry := {c165}- ({1 1@, b, 04})*-{0103}-@(1, bi{ea})*
{caes}- ({ea}{a, b})* - {cacs}. One gets Lg := {$1 030" VS3wS4w" VS5 | v € {@, b}* and w €
{a,b}*} € M(Ls) and finally dMIR-dMIR € M (Lg) C Myyise(dMIR U{A}) = Myyise(MIR).

O

Now, given two languages L1, Ly € Myt (dMIR U {A}) we know that each of them is
obtained by finitely many applications of a-transducer mappings (each represented by trio
operations) and the operation twist in any order. Our goal is to show, that each of this
sequences op; and op, that are applied to the generator dMIR can be replaced by one
sequence of operations which simulates these sequences on each single component of the
generator dMIR - dMIR C {@,b}* - {a,b}*. Since this is easy as long as only a-transducer
mappings are used we have to show that also twist can be applied separately to each single
component. This will be proved in Lemma 6 below.

2.6 Lemma

Let L € Myyist(L) such that L := Ly - Ly for Ly C X7, Ly C X3 with ¥y N Xy = 0. Then

Ky - Ky € Myyise(L) for each choice of K; € {L;, LT twist(L;)},i € {1,2}.

Proof: With Ly - Ly € Myuis(L) also Lz := {c1}*Li{ca} Ly € Myyiste(L). Then
cx, if x € 22

Ly - Ly = f~1(twist(Ls) N (c132)*(Z1¢2)*) for f(z) := vey, ifred

. Now, by

Lemma 1 also

()L} - Ly = (L5 - L1)™Y € Myyist(L).

Starting with Ly := Li{ca}*La{c3}* € Myyist(L) one easily shows
(b)Lq - L5 € Myyist(L) by the same technique.

Ls = twist(Ly - Ly - {c3}*) N (X1c3)*E5 is the basis for proving
(c)Ly - twist(Lg) € Myyist(L).

Starting with Ly - Ly € Myuise(£) we find L5V - L1 € Myyise(L) since a twist-
closed trio is closed under reversal. Applying (b) yields L5 - Ly € Myuist(L), (¢) gives
L5 - twist(L1) € Myyist(L), and a reversal followed by application of (a) finally yields
(d)twist(L1) - Ly € Myist(L).

All other combinations stated in the lemma are now obtainable from combinations of
cases (a) to (d).

O

As described in the motivation before Lemma 6 we can now apply any finite sequence
of applications of trio operations (a-transducer mappings) and/or twist to the two com-
ponents specified by the two generators from £ for a language L = Ly - Ly € Myyise(L) in
order to verify Theorem 7 with the help of Lemma 6:

2.7 Theorem

If £ is closed with respect to product then My (L) is closed under product, too.

Since we know dMIR - AMIR € M yise(dAMIR U {\}) = Myyise(MIR) by Lemma 5 we

obtain immediately:

2.8 Corollary

The family M st (MIR) is closed with respect to product.

Combining Lemma 2, Corollary 8, and Lemma 4 we get the main result:

2.9 Theorem
Mist(MIR) = Mn(MIR)

A consequence of this new characterization of the family of languages accepted in

quasi-realtime by reversal-bounded on-line multipushdown machines we find a new char-
acterization of the recursively enumerable languages:

2.10 Corollary
Re = Mist(MIR)

In what follows we want to show how to homomorphically represent the recursively
enumerable languages by twisting linear context-free languages. It is well known and easy
to show that any intersection-closed trio is closed w.r.t product but closure under twist
generally depends on the generator of this trio. It is known that each intersection-closed
trio is also closed with respect to shuffle.

The proof of this theorem is similar to the one of Theorem 1 in [BaBo 74] and can
more easily be described by using the operation of literal shuffle.

2.11 Theorem

A language L is recursively enumerable if and only if there exists a linear context-free
language K € linCf and homomorphisms f and ¢ such that L = g(f~!(twist(K))).

Proof: Let M be a deterministic Turing machine with state set Z accepting I C X*
without loss of generality in such a way that all and only the halting configurations are
the accepting ones. Each configuration will be represented by an instantenous description
(ID) of the form uqv, where uv is the current string over the tape alphabet of M, ¢ € Z
is a state of M, and ¢’s position in ugqv indicates that M is in state ¢ while reading the
left-most symbol of v. Initial IDs are strings gow, where gg is the initial state of M and
w € ¥* is the input of the Turing machine.

Let K be the set of strings of the form IDo$ID1$ - -IDy_1IDy. $¢ ID} Y ¢ID}) ¢
< IDVVEIDG T where $ and ¢ are distinguished symbols used as markers, D] =
h(IDg) encodes the initial configuration IDg of the TM M and uses a different copy
I' := h(X) of the alphabet ¥ which is used in all the other [Ds. This is because all but
the initial ID finally have to be deleted. The coding h will act as the identity on the
set Z of states. ID) describes a final configuration of M. Also, for 1 < j < k no ID;
needs to be identical to ID’, but if for some i € {0,...,k — 1} ID;$ is a substring of the

set K then ¢ID}7" is the corresponding substring of K if and only if ID} , represents
the configuration of M reached in one step from that represented by ID;. That K is in
fact a linear context-free language is easily verified, since the set of all strings of the form
ID; $¢ ID:L7 for which ID; by ID! | holds clearly is an element of linCf. The iterated
substitution of this language between the $ and ¢ symbol in the middle obviously will be
linear context-free again. The set of the descriptions of initial instantenous descriptions
ID{"™® is regular as is the set of IDs of the form IDj in the middle. Hence, K € linCf
follows.

Now, twist(K) contains, among others, strings of the form (IDg wy; IDg)%¢
(IDy wyie ID)$¢(IDo Wy IDY)$¢ - - - $¢(IDy Wy ID),)$¢. 1t will be guaranteed by applying

10

an inverse homomorphism, that only those strings from twist(K') will be taken for which

[IDo| = |ID"] , h(IDg) = IDY, and ¥i € {1,...,k} : |ID;| = |ID'| | ID; = ID".
Let f: (BUTUZU{#}* — (XUTUZU{S$,¢})* be defined by:

yr , if x="h(y) el
fleg)y:==% 2z , if zeXUZ

Then f~!(twist(K)) =

IDg is an initial ID of M,
h(IDO)#IDl# - FHID L H Vie{l,...,k}: ID;_y b ID;,
and IDy is an acepting ID.

Now, let g : (NMUT'UZU{#})* — ¥* be a homomorphism that erases the symbols from
the set Y UZU{#} and acts as h~! on the set I' = h(X). Then, finally g(f ™! (twist(K))) =
L = L(M), since ¢ extracts the input string of the Turing machine M from its initial
configuration encoded by the prefix h(IDg) in f=!(twist(K)).

O

Corollary 10 which is similar to the characterizations presented in [BaBo 74], [Salo 81]
and [Enge 96] can now be obtained from Theorem 11 by a more direct construction instead
of using the new characterization of the family Mn(MIR).

In [JaPe 94] it was proved that the family Mn(D1) = PBLIND(n) is closed with
respect to twist. We will now show that for each & > 1 the family M (C}) of languages
accepted by blind k-counter machines in realtime is twist-closed, too. To do this let
us recall that each blind k-counter machine M can easily be described by a finite state
transition diagram in which a directed arc from state p; to po is inscribed by the input
symbol z to be processed and a vector A € {+1,0, —1}* used for updating the counters
by adding A to the current contents C'; € Z* of the counters . This will be written as
P % pa. A string w = zix9xs - 2, 12,, ¥; € X is accepted by M, iff there exists a

path in the transition diagram of the form gq % q1 % 92 % 43" qn—1 % qn, Where
1 2 3 n

¢o (gn) is an initial (resp. final) state and ¥7_; A; = 0 in each component. The machine
starts with empty counters and accepts only when all counters are zero again. It is easy
to construct a blind k-counter machine M, that accepts L™ from the machine M; that
accepts L € M(Ck): One just has to revert the arcs in the state transition diagram of
My and exchange the sets of final and initial states. Now it is not difficult to show that
M(Cy) is twist-closed for each k > 1.

2.12 Theorem
Vke N, kE>1 :Mtwist(Ck) = M(Ck)

Proof: Let L € M(C}), L C ¥*, then there exists a blind k-counter machine M which
accepts L = L(M) in realtime. In order to accept the set twist(L.) we modify the machine

11

M to a new machine My, as follows: Let @ (Qo, and @f) be the set of states (initial
and final states, resp.) of the machine M, then Qs := Q? X {0, €} is the set of states of
Myyist. The sets of initial (and final) states Qo tuwist (Q 5 twist; resp.) of Myyq are given by

QO,twist = {(p07pf70) | Po € QOvpf € Qf} and Mf,twist = {(p7p7 0)7 (p7p7 6) | pE Q} Let
weE L, w=1x1T223 Tp_1T,, T; € X be a string of length |w| = n which is accepted by

M in a sequence of transitions gg —> Il —> 02 —> 43 Q-1 —> ¢r. The new machine

Miwist now uses the finite control of M in the ﬁrst Components of the elements in Qruist
in each odd step beginning with the first move, while it is used every second (even) step
in the second components backwards. The sequence of transitions of My, accepting
twist(w) now would be

qrn
qo o il . il o 42 - xL%_J;rl %1
n A1> n AL Gn—1 A, Gn—1 Ay ALEJ-H Q[E])
0 e 0 e 2 x

where x € {0, ¢} depends on the length of the input string:

a2\ qz
. . L PR 2 . . .
The last step in this computation is 4241 2 qz |, if n is even, and is
51
e 0
93] e 11
2 .
a2 — EE otherwise.
0 A e

Conversely, every accepting computation in My,,;ss can be unfolded to yield a valid
computation in M showing that only strings of the form twist(w), w € L(M) are accepted
by Mtwist-

O

2.13 Corollary
Vke N, kE>1 3Mth’st(Bk) = M(Ck)

Proof: From Lemma 12 and By € M(C}) we see Myyise(Bi) € M(Cy). To show
the converse we have to verify Cj € Myyisi(Bg). Let ¢ ¢ I'y and the homorphism h¢
(I'y U {¢})* — I'p be defined by h(z) := z, if @ € ['y and h(¢) := A. Then Lj :=
twist (h™1(Bg)) N {¢bi, aj¢ | biyaj € Ti}* is an element of Mys(By) and the pairs ¢b;, a;¢
may appear in any order for all 1 < ¢, 7 < k. Hence, applying the inverse homomorphism

g : 17— (FpU{¢})” with g(a;) == a¢and g(b) = ¢b wesee Cy = g7 (Ly) € Myyist(Bs)-
O

Greibach showed €y € M(Bs3) in [Grei 78]. We want to show that it is sufficient to
use only one more counter to accept Cy using only k41 partially blind reversal-bounded
counters. This should also be compared with Theorem 1 in [Hrom 85].

12

2.14 Theorem
Yk € Nk > 1: M(C) G M(Brys)-

Proof: 7C”. Let (' be accepted by some blind k-counter machine working in realtime.
The new reversal-bounded (k+1)-counter machine My, is given as follows: One counter,
call it zp, is used to non-deterministically find the middle of each string w € C} by adding
1 in each step when reading a prefix w of w = wv. We call this the first phase of the
work of Mpgy1. Then, non-deterministically this phase is stopped and in the following,
second, phase the counter zg is decreased by 1 in each and every step. One has |u| =
lv] = |7"20—| if and only if this counter reached zero after reading the last symbol of w. All
other counters z; to 2z are treated differently in the first and the second phase of Myy1’s
computation: If A = (d1,...,0;) is a counter-update used in the first phase of M}, then
A= (6 4+ 1,...,8;,+ 1) € {2,1,0}* is the non-decreasing counter-update in My, to be
used instead. Likewise, if A = (41,...,8;) is a counter-update used in the second phase
of My, then A’ := (6, —1,...,8,— 1) € {—2,—1,0}* is the non-increasing counter-update
to be used in My instead. Since the first and the second phase consist of equally many
steps, the overall change of the counters is zero again, and exactly the strings form Cf}
are accepted using k+1 reversal-bounded partially blind counters. Since the new counter-
updates now are elements of {—2, —1,0, 1,2}**t! and not of {—1, 0, 1}**! we have to modify
the machine My, by splitting moves that increase (or decrease) a counter by 2 into two
moves that increase (or decrease) this counter by 1 and all other counters are treated as
before in the first step and stay stationary in the second step. This modification gives
a partially blind (k+1)-counter machine that accepts C in quasi-realtime and with one
reversal on each of its counters, hence M(C}) C M(Bgt1).

In order to see the strictness of this inclusion we use known results from Ginsburg,
[Gins 75], Greibach, [Grei 76], or Latteux, [Latt 78, Latt 79], where it was shown that

k+1
Biy1 0 [T {a;i}*{b;}* is not an element of M(C}), hence M(Cy) G M(Bgyy) for each
=1
k> L
O

Consequently, |J M(C;) = Mqn(Ch) forms a strict hierarchy of twist-closed semiAFLs
120

and therefore cannot be principal as twist-closed semiAFL.

The language Ej := {ajaj ---a} | n € IN} was used to separate the classes M(C}) &
M(Cly1), see [Latt 77, Latt 78, Latt 79], by proving Fary1 ¢ M(C). Ginsburg, [Gins 75]
Example 4.5.2, has shown M(By) ¢ M(Byy1) and in [Grei 76, Jant 79a] it was shown
that Bry1 € M(Dy). Kortelainen has shown in [Kort 80] Theorem 2.2.2, that Fyyq ¢

F(COMy), where COM), denotes the class of commutative languages over an alphabet of
k symbols. Note, M(C}) G M(COMag).

We conjecture the following sharpening of the above results: M(By) ¢ M(Cy), for all
ke N k> 1.

M(By) ¢ M(Cy) can be shown easily: M(B;) C M(LCF) but M(Cy) € M(LCF),
and only M(By) C M(CYy) is obvious.

13

Acknowledgement: 1 thank Julia Maas for discussing various aspects of the twist operation and
especially Olaf Kummer for Theorems 12 and 14.

References

[BaBo 74] B.S. Baker and R.V. Book. Reversal-bounded multipushdown machines, J.
Comput. Syst. Sci., 8 (1974) 315-332.

[Bers 80] J. Berstel, Transductions and Context-free Languages, Teubner Stuttgart
(1980).

[BoGr 70] R.V. Book and S. Greibach. Quasi-realtime languages, Math. Syst. Theory
19 (1970) 97-111.

[BoGr 78] R.V. Book and S. Greibach. The independence of certain operations on semi-
AFLs, RAIRO Informatique Théorique, 19 (1978) 369-385.

[BoNP 74] R.V. Book, M. Nivat, and M. Paterson. Reversal-bounded acceptors and
intersections of linear languages, Siam J. on Computing, 3 (1974) 283-295.

[Bran 87] F.J. Brandenburg. Representations of language families by homomorphic
equality operations and generalized equality sets, Theoretical Computer Sci-
ence, 55 (1987) 183-263.

[Bran 88] F.J. Brandenburg. On the intersection of stacks and queues, Theoretical
Computer Science, 58 (1988) 69-80.

[Chan 81] T.-H. Chan. Reversal complexity of counter machines, in: Proc. 13th annual
ACM Sympos. on Theory of Computing, Milwaukee, Wisconsin, (1981) 146
157.

[Culi 79] K. Culik. A purely homomorphic characterization of recursively enumerable
sets, J. ACM 26 (1979) 345-350.

[DuHr 87] P. Duris and J. Hromkovi¢. Zerotesting bounded one-way multicounter ma-
chines. Kybernetika, 23 (1) (1987) 13-18.

[EnRo 79] J. Engelfriet and G. Rozenberg. Equality languages and fixed point lan-
guages, Information and Control, 43 (1979) 20-49.

[Enge 96] J. Engelfriet. Reverse twin shuffles, Bulletin of the EATCS, vol. 60 (1996)
144.

[FIMR 68] P.C. Fischer, A.R. Meyer, and A.L. Rosenberg. Counter machines and
counter languages, Math. Syst. Theory, 2 1968 265-283.

[Gins 75] S. Ginsburg, Algebraic and Automata Theoretic Properties of Formal Lan-
guages, North Holland Publ. Comp. Amsterdam (1975).

[GiGo 71] S. Ginsburg and J. Goldstein. Intersection-closed full AFL and the recursively

enumerable languages, Information and Control, 22 (1973) 201-231.

14

[GiGr 70]

[Grei 76]

[Grei 78]

[Hrom 85]

[HoUl 79]

[Jant 79a]

[Jant 79b]

[JaPe 87]

[JaPe 91]

[JaPe 94]

[Kort 80]

[Kosa 82]

[Latt 77]

[Latt 78]

[Latt 79]

[Mayr 84]

S. Ginsburg and S. Greibach, Principal AFL, J. Comput. Syst. Sci., 4 (1970)
308-338.

S. Greibach. Remarks on the complexity of nondeterministic counter lan-
guages, Theoretical Computer Science, 1 (1976) 269-288.

S. Greibach. Remarks on blind and partially blind one-way multicounter
machines, Theoretical Computer Science, 7 (1978) 311-236.

J. Hromkovié¢. Reversal bounded multicounter machines. Computers and Ar-
tificial Intelligence, 4 (1985) 361-366.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley Publ. Comp. (1997).

M. Jantzen. On the hierarchy of Petri net languages, R.A.1.R.O., Informa-
tique Théorique, 13 (1979) 19-30.

M. Jantzen. On zerotesting-bounded multicounter machines. In: Proc. 4th
GI-Conf. Lecture Notes in Compuer Science, vol. 67, Springer, Berlin, Hei-
delberg, New York (1979) 158-169.

M. Jantzen and H. Petersen. Petri net languages and one-sided reductions
of context-free sets, in: (K Voss, H. Genrich, and G. Rozenberg, eds.) Con-
currency and Nets, Springer, Berlin, Heidelberg, New York (1987) 245-252.

M. Jantzen and H. Petersen. Twisting Petri net languages and how to obtain
them by reducing linear context-free sets, in: Proc. 12th Internat. Conf. on
Petri Nets, Gjern (1991) 228-236.

M. Jantzen and H. Petersen. Cancellation in context-free languages: enrich-
ment by reduction. Theoretical Computer Science, 127 (1994) 149-170.

J. Kortelainen.Properties of trios and AFLs withbounded or commutative
generators, Dept. of Mathematics, Univ. of Oulu, Finland, Techn. Report
No. 53 (1980).

S.R. Kosaraju. Decidability of reachability of vector addition systems, 14th
Annual ACM Symp. on Theory of Computing, San Francisco, (1982) 267
281.

M. Latteux. Cones rationnels commutativement clos. R.A.I.LR.O., Informa-
tique Théorique, 11 (1977) 29-51.

M. Latteux.Langages commutatifs, These Sciences Mathematiques, Univ.

Lille (1978).

M. Latteux. Cones rationnels commutatifs. J. Comput. Syst. Sci., 18 (3)
(1979) 307-333.

E.W. Mayr. An algorithm for the general Petri net reachability problem,
SIAM J. of Computing, 13 (1984) 441-459.

15

[Salo 78] A. Salomaa. Equality sets for homomorphisms and free monoids, Acta Cy-
bernetica 4 (1978) 127-139.

[Salo 81] A. Salomaa. Jewels of formal Language Theory, Computer Science Press,

Rockville (1981).

16

