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AbstractThe language theoretic operation twist from [JaPe 87] is studied in connectionwith the semiAFLs of languages accepted by reversal bounded multipushdown andmulticounter acceptors. It is proved that the least twist -closed trio generated byMIR := fwwrev j w 2 fa; bg�g is equal to the family of languages accepted in quasi-realtime by nondeterministic one-way multipushdown acceptors which operate insuch a way that in every computation each pushdown makes at most one reversal.Thus, M\(MIR) =Mtwist(MIR) and this family is principal both as a twist -closedand as an intersection -closed semiAFL. This is in contrast to the semiAFL of lan-guages accepted by reversal-bounded multicounter machines in quasi-realtime. Thisfamily is a well known semiAFL which is principal as an intersection -closed semi-AFL with generator B1 := fan1an1 j n 2 INg, see [Grei 78], but is not principal as asemiAFL. It is here shown that it forms a hierarchy of twist -closed semiAFLs andtherefore cannot be principal as twist -closed semiAFL.ZusammenfassungDie in [JaPe 87] de�nierte Operation twist auf W�ortern und formalen Sprachenwird untersucht in Verbindung mit den semiAFL's der von umkehrbeschr�anktenKeller- und Z�ahlerautomaten akzeptierten Sprachen. Es wird gezeigt, da� das klein-ste, von der Sprache MIR := fwwrev j w 2 fa; bg�g generierte twist -abgeschlosseneTrio identisch ist mit der Familie aller Sprachen, die von mehr-Kellerautomatenin quasi-Realzeit mit umkehrbeschr�ankten Kellern akzeptiert werden. Daher istM\(MIR) = Mtwist(MIR) als durchschnitts - und als twist -abgeschlossenes Trioeine sogenannte Haupt-semiAFL (principal semiAFL). Im Unterschied dazu ist dieFamilie M\(B1), mit Generator B1 := fan1an1 j n 2 INg, der in quasi-Realzeit vonumkehrbeschr�anktenmehr-Z�ahlerautomaten akzeptierten Sprachen, vergl. [Grei 78],zwar twist -abgeschlossen, aber es gilt nicht M\(B1) =Mtwist(B1).0



1 IntroductionIn connection with a representation of Petri net languages by Dyck-reductions of (linear)context-free sets the operation twist was de�ned and used for the �rst time, see [JaPe 87,JaPe 94]. The de�nition of this new language theoretic operation is based upon a mappingfrom strings to strings which rearranges letters: for a string w := x1x2 � � �xn�1xn theunique new string is twist(w) := x1xnx2xn�1 � � �xbn2 c+1. Observe, that twist : �� �! �� isa bijection and it's inverse mapping twist�1(w) yields a unique string v with twist(v) = w.It follows that for each string w there exists a non-negative integer k 2 IN such thattwistk(w) = w. The mapping twist can also be regarded as a permutation of the ndistinct positions for the symbols of a string of length n. As language theoretic operationtwist is generalized to languages and families of languages in the obvious way, see Def.4.It was shown in [JaPe 94], Th.2.10, that the family Reg of regular sets is closed withrespect to twist . The inclusion twist(Reg ) �= Reg must be proper since twist(MIR) =fa2; b2g�, where MIR := fwwrev j w 2 fa; bg�g is the non-regular context-free set ofpalindroms of even length. This observation means, that the regular set fa2; b2g� willnever appear as twist(R) for any regular set R 2 Reg. Notice, twist�1(MIR) = COPY :=fww j w 2 fa; bg�g . In [JaPe 94], Th.2.11, it was also proved that the family L0 of �-free labelled, terminal Petri net languages is closed with respect to the operation twist .Again, twist(L0) �= L0, since twist(MIR) 2 L0 but MIR 62 L0 follows from resultsin [Grei 78, Jant 79a] using the decidability of the reachability problem for Petri nets,proved in [Mayr 84, Kosa 82]. The proof for the closure of L0 under twist essentiallyuses a construction that can easily be be modi�ed for showing closure with respect tothe operation 12 . In fact, the two operations 12 and reversal are closely linked with theoperation twist . In conjunction with the usual trio-operations the combination of twistand product can simulate any (�nite) combination of intersection, reversal , and 12 asshown below in Lemma 1 and in Theorem 2.11 where a new morphic characterization ofthe recursively enumerable sets is given by Re = Ĥ(H�1(twist(lin Cf))) = M̂twist(dMIR) .Similar results are known for principal intersection-closed full trios (see [BaBo 74]) and forfull principal trios, the generator of which is as rich in structure as the twinshu�e languageLTS (see [Salo 81], Chapt. 6, for a condensed presentation. LTS was there abbreviatedby L�). A similar result has been shown by Engelfriet in [Enge 96] for the reverse twinshu�e language LRTS . However, neither LTS nor LRTS is context-free.We will prove, Theorem 2.11, the characterization of the r.e. sets directly in a mannersimilar to proofs in [BaBo 74] which nowadays can be viewed as standard methods.It was proved in[BoNP 74] that the non-full intersection-closed trio M\(MIR) equalsH(lin Cf ^ lin Cf ^ lin Cf), where for families of languages K and L the wedge is de�ned byK ^L := fK \L j K 2 K and L 2 Lg. We will show here that the closure of lin Cf undertwist contains generators for the family M\(MIR) and that the latter family of quasi-realtime multipushdown languages is closed with respect to the operation twist , henceM\(MIR) =Mtwist(MIR).The situation becomes di�erent for the semiAFL of languages accepted by one-wayreversal-bounded multicounter machines in quasi-realtime. This family is a well knownsemiAFL which is principal as an intersection-closed semiAFL with generator B1 :=fan1an1 j n 2 INg, which is not a principal semiAFL, see [FiMR 68, Grei 78]. Si�0M(Ci) =1



M\(C1) = BLIND(lin) = Si�0M(Bi) = M\(B1) = RBC(n) is know from [Grei 78].The known situation for these hierarchies is as follows: For all i � 1 we have M(Bi) �=M(Bi+1), see [Gins 75], M(Ci) �= M(Ci+1), and M(Bi) � M(Ci), shown in [Grei 76,Grei 78], [Latt 77], [Latt 78, Latt 79] and [Kort 80]. We will in addition show here thatSi�0M(Ci) = M\(C1) forms a hierarchy of twist -closed semiAFLs and therefore cannotbe principal as twist-closed semiAFL. Each such semiAFL M(Ck) can be characterized asfamily BLIND(n) = BLIND(lin) of languages acceptable by blind k-counter machinesin quasi-realtime (or equivalently linear time), [Grei 78]. Slightly improving a construc-tion by Greibach we will prove that the semiAFL M(Ck) of blind k-counter languagesis (strictly) included in the family M(Bk+1) of languages accepted in quasi-realtime bynondeterministic one-way (k+1)-counter acceptors which operate in such a way that inevery computation each counter makes at most one reversal.2 Basic De�nitions2.1 De�nitionLet Reg (resp. lin Cf , Cf , L0, Cs, L�0 , Rec, Re) denote the families of regular sets (linearcontext-free, context-free, �-free labelled terminal Petri net, context sensitive, arbitrarilylabelled terminal Petri net, recursive, and recursively enumerable languages, respectively).2.2 De�nitionLet w1; w2 2 ��; w1 := x1x2 � � �xm, and w2 := y1y2 � � �yn where xi; yj 2 � for 1 � i �m and 1 � j � n.Then the shu�e tt and the literal shu�e ttlit are de�ned as follows:w1 ttw2 := ( u1v1u2v2 � � �unvn ����� n 2 IN; ui; vi 2 ��; w1 = u1u2 � � �un;w2 = v1v2 � � �vn ),w1 ttlitw2 := ( x1y1x2y2 � � �xmymym+1 � � �yn ; if m � nx1y1x2y2 � � �xnynxn+1 � � �xm ; if n < m2.3 De�nitionSpeci�c languages we consider are constructed using the alphabets � := fa; bg, � := fa; bgand �n;�n speci�ed for each n 2 IN; n � 1 by: �n := fai; bi j 1 � i � ng, �n := fai; bi j1 � i � ng, and the homomorphisms �; h; h; and hi de�ned by:2



x := ( x ; if x 2 �x ; if x 2 � , h(x) := ( x ; if x 2 �� ; if x 2 � , h(x) := ( � ; if x 2 �x ; if x 2 � , and hi(a1) :=ai; hi(b1) := bi for i 2 IN n f0g;By jwjx we denote the number of occurences of the symbol x 2 � within the stringw 2 �� and jwj := �x2�jwjx is the length of w.Bi := ( Bi�1 tt fani bni j n 2 INg ; if i � 2fan1bn1 j n 2 INg ; if i = 1Ci := ( Ci�1 tthi(C1) ; if i � 2fw 2 fa1; b1g� j jwja1 = jwjb1g ; if i = 1Di := 8><>: Di�1 tthi(D1) ; if i � 2fw 2 fa1; b1g� j jwja1 = jwjb1 ;and 8w = uv : juja1 � jujb1g ; if i = 1Ei := fan1an2 � � �ani j n 2 INgdMIR := fwcwrev j w 2 ��g.MIR := fwwrev j w 2 ��g.PAL := fw j w = wrev; w 2 ��g.dCOPY := fwcw j w 2 fa; bg�gCOPY := fww j w 2 ��gLTS := fw 2 (� [ �)� j h(w) = h(w)gLRTS := fw 2 (� [ �)� j h(w) = h(wrev)gtwinPAL := fw 2 (� [ �)� j h(w) 2 MIR and h(w) 2 MIRgLet us repeat the basic notions and results from AFL-theory details of which are to befound in the textbooks of Ginsburg, [Gins 75], and Berstel, [Bers 80].A family of languages L is called trio if it is closed under inverse homomorphisms,intersection with regular sets, and nonerasing homomorphisms. The least trio containingthe family L is writtenM(L). If L := fLg, then L is a generator of the trioM(L), shortlywritten as M(L) and then called principal. A union-closed trio is called semiAFL. Anyprincipal trio is closed with respect to union and thus forms a semiAFL. If a trio is closedunder arbitray homomorphisms, then it is called a full trio, written M̂(L).A family of languages L is called an AFL (or full AFL) if it is a trio (full trio, resp.)which is closed under the operations union, product and Kleene plus. The smallest AFL(or full AFL) containing the family L is written F(L) (F̂(L), resp.). Each full AFL isclosed with respect to Kleene star.If a trio M(L) (or an AFL F(L)) is in addition closed with respect to one furtheroperation �� then this family will be called �� -closed and abbreviated as M��(L) (resp.F��(L)). 3



The language D1 de�ned above is the so-called semi-Dyck language on one pair ofbrackets which is often abbreviated by D0�1, see e.g. [Latt 77, Latt 79] or [Bers 80]. Dnhere denotes the n-fold shu�e of disjoint copies of the semi-Dyck language D1 and it isknown [Grei 78] that [i�0M(Di) =M\(D1) = PBLIND(n):The latter family is the family of languages accepted in quasi-realtime by nondeterministicone-way multicounter acceptors which operate in such a way that in every computationno counter can store a negative value, and whether or not the value stored in a counter iszero cannot be used for deciding the next move. This family is equal to the family L0 of�-free labelled terminal Petri net languages, see [Jant 79a, Grei 78].The languages Cn are the Dyck languages on n pairs of brackets ai; ai, often abbreviatedby D�n, see again [Latt 77, Latt 79] or [Bers 80]. Greibach, [Grei 78], has shown that[i�0M(Ci) =M\(C1) = BLIND(lin) = [i�0M(Bi) =M\(B1) = RBC(n):Here BLIND(lin) denotes the family of languages accepted in linear time by non-deterministic one-way multicounter acceptors which operate in such a way that in everycomputation all counters may store arbitrary integers, and the information on the contentsof the counters cannot be used for deciding the next move. The family RBC(n) is the fam-ily of languages accepted by nondeterministic one-way multicounter acceptors performingat most one reversal in each accepting computation. Hromkovi�c proved in [Hrom 85] thatquasi-realtime multicounter machines and quasi-realtime partially blind multicounter ma-chines with a constant number of reversals de�ne the same family of languages, see also[Jant 79b] and [�DuHr 87].The least intersection-closed full semiAFL M̂\(B1) has been characterized in [BaBo 74]as the family of languages accepted by nondeterministic on-line multicounter acceptorswhich operate in such a way that in every computation each counter makes at most onereversal. It was there shown that this class contains only recursive sets, i.e. M̂\(B1) �Rec. Latteux has shown in [Latt 77] that M\(B1) is the smallest commutation-closedtrio, i.e., if L 2 M\(B1) then  ( �1(L)) 2 M\(B1), where  is the Parikh mapping : �� �! IN j�j de�ned by  (w) := (jwjx1; : : : ; jwjxj�j). Latteux, [Latt 79], has alsoobserved that M̂\(B1) =M\(B1) �= H(lin Cf ^ lin Cf ^ lin Cf) .dMIR, MIR and PAL are well-known context-free generators of the family lin Cf oflinear context-free languages: lin Cf = M(dMIR) = M(MIR) = M̂(PAL). These lan-guages are precisely the languages accepted by nondeterministic on-line single pushdownacceptors which operate in such a way that in every accepting computation the pusdownstore makes at most one reversal. And this family is not closed with respect to productor Kleene plus.Similarly, the intersection-closed semiAFLM\(MIR) can be identi�ed with the familyof languages accepted by nondeterministic on-line multipushdown acceptors which operatein such a way that in every computation each pushdown makes at most one reversal and4



that work in quasi-realtime, see [BoGr 70]. This family, however, becomes the set ofrecursively enumerable languages if erasing is allowed and was characterized in [BaBo 74]by Re = M̂\(MIR) = M̂(twinPAL).2.4 De�nitionLet � be an alphabet, then twist : �� �! �� is recursively de�ned for any w 2 �� and a 2� by: twist(aw) := a � twist(wrev), and twist(�) := �.For sets of strings L and families of languages L the operation twist is generalized asusual: twist(L):= ftwist(w) j w 2 Lg and twist(L):= ftwist(L) j L 2 Lg.We see that twist(w) = x1xnx2xn�1 � � �xbn2 c+1 for any string w 2 ��; w := x1x2 � � �xn�1xnwhere xi 2 � for all i 2 f1; � � � ; ng.Viewed as the permutation �twist of the n subscripts 1; 2; : : : ; n, i.e. the positions ofthe symbols that form the string w := x1x2 � � �xn�1xn this yields�twist(i) := ( 2 � i� 1 ; if 0 � i � dn2 e2(n+ 1� i) ; otherwise :Twisting a context-free language obviously yields a context-sensitive language. Wehave twist(Cf )�= Cs and the inclusion must be proper since twist(L) has a semilinear Parikhimage whenever L has this property. Note that twist(L) may not be context-free even fora linear context-free language L := Llin or a one-counter language L := Lcount. It is easilyveri�ed that twist(Llin) =2 Cf and twist(Lcount) =2 Cf for Llin := fa3mbncndm j n;m 2 INgand Lcount := fa3mbmcndn j n;m 2 INg. One veri�es twist(C)\ f(ad)i(ac)j(ab)k j i; j; k 2INg = f(ad)m(ac)m(ab)m jm 2 INg for C 2 fLlin; Lcountg.In order to use the operation 12 in connection with twist we shall de�ne a slightlygeneralzied version of this operation, compare [HoUl 79]:2.5 De�nitionFor any string w := x1x2 � � �xn; xi 2 �; let 12(w) := x1x2 � � �xdn2 e.Hence, 12(abaab) = 12(abaabb) = aba. 5



2.1 LemmaAny trio which is closed with respect to twist is also closed under reversal and 12 .Proof: Let L � ��; $ =2 � be a new symbol and f : (�[f$g)� �! �� a homomorphismde�ned by f($) := � and 8x 2 � : f(x) := x. Then Lrev = g�1(twist(f�1(L) \ f$g���))where g : �� �! (� [ f$g)� is a homomorphism given by 8x 2 � : g(x) := $x: Thus anytwist -closed trio M(L) is closed with respect to reversal.To express the operation 12 by trio operations and twist that works for strings of botheven and odd length we have to insert a dummy symbol for those of odd length andthen mark half of the symbols. To do this we use an inverse homomorphism h�11 . Byintersection with a suitable regular set we then can �x the position of the dummy symboland the marked symbols.In detail we de�ne: � := fx j x 2 �g as a disjoint copy of � and the homomorphismh1 : (� [ � [ f$g)� �! �� by: h1(x) := h1(x) := x for all x 2 � and h1($) := �.Now, for any string w 2 ��; h�11 (w) may contain an arbitrary number of extra $-symbolsand likewise barred symbols from � at any position. Then K1 := h�11 (L) \ ��f$; �g��contains at most on extra symbol $ and all and only the barred symbols at the righthand side. De�ne new alphabets � := fhx; yi j x 2 �; y 2 �g, �$ := fhx; $i j x 2 �gand a homomorphism h2 : (�$ [ �)� �! (� [ � [ f$g)� by h2(hx; yi) := xy. NowK2 := h�12 (twist(K1))\ (�� [���$) is a set of strings, each of which describes the twist ofa string from K1 in the projection of both components of the new symbols from � [ �$.Since the �rst d jwj2 e symbols of the original string w are put into the �rst componentof the corresponding string from K2 a simple coding will retrieve the string 12(w). Withh3 : (� [ �$) �! � de�ned by h3(hx; yi) := x one obtains 12(L) := h3(K2). The onlyoperations we used to de�ne 12(L) were trio operations and twist so that the lemma wasproved completely.2.2 LemmaEach twist-closed trio L that is in addition closed under product is also closed w.r.t.intersection.Proof: Let L1; L2 � ��; L1; L2 2 L and � a copy of � with h : � �! � being thebijection between the alphabets. By Lemma 1 L2rev 2 L and then also L3 := g�1(twist(L1�h(L2rev)) 2 L where g : �� �! (��)� is de�ned by g(x) = xh(x) for all x 2 �. ObviouslyL3 = L1 \ L2, and this proves the lemma.There exist families of languages that are closed with respect to the operations twistand product but not under intersection! The family Lslip of languages having a semi-linearParikh image, i.e. are letter equivalent to regular sets, is such a family. This is because6



this family is not a trio since it is not even closed with respect to intersection by regularsets! To see this, consider the language L := fab2n j n 2 INg [ fbg�fag� 2 Lslip , whereone has L \ fagfbg� =2 Lslip .This observation indicates that it might not be easy to express the operation twist bymeans of known operations in abstract formal language theory.Using simple and standard techniques we can show that the languages MIR, COPYand their deterministic variants all are generators of the same twist-closed trioMtwist(MIR).2.3 TheoremMtwist(dCOPY [ f�g) =Mtwist(COPY ) =Mtwist(MIR) =Mtwist(PAL) =Mtwist(dMIR [ f�g).Proof:(a) COPY 2 Mtwist(dCOPY [ f�g) follows since COPY is obtained from dCOPYby limited erasing of the symbol c and it is well known that every trio is closed w.r.t. thisoperation.(b) MIR 2 Mtwist(COPY ) follows by observing that MIR = twist(COPY ). This canbe shown by induction on the length and structure of the strings involved.(c) dMIR 2 Mtwist(MIR), (d) PAL 2 Mtwist(dMIR [ f�g), and (e)MIR 2 Mtwist(PAL)follow from the well known: M(dMIR [ f�g)=M(MIR)=M(PAL).(f) dCOPY 2 Mtwist(dMIR): K2 := fw$iwrev jcj j w 2 fa; bg�; i; j 2 IN n f0gg 2M(dMIR) is easily proved. Likewise, K3 := twist(K2)\ (fa; bgfjcg)� � f$jcg � (f$gfa; bg)� 2Mtwist(dMIR) and then dCOPY = f(h�1(K3)) follows with h : fa; b; c; a; bg� �! fa; b; $; jcg�de�ned by h(a) := ajc; h(b) := bjc; h(c) := $jc; h(a) := $a; h(b) := $b, and f(a) := f(a) :=a; f(b) := f(b) := b; f(c) := c. Consequently, dCOPY 2 Mtwist(dMIR).Since the mapping twist only performs a permutation of the symbols that form a stringit is easily seen that Re, Rec, and Cs are twist-closed families. The family M\(MIR) ofquasi-realtime multipushdown languages [BoNP 74, BoGr 78] will be shown to be anothertwist -closed family.2.4 LemmaThe family M\(MIR) is closed with respect to the operation twist .Proof: Let L 2 M\(MIR) be accepted by some nondeterministic on-line reversal-bounded multipushdown machine ML which operates in such a way that in every compu-tation each pushdown makes at most one reversal and runs in linear time, see [BoNP 74].In order to accept K := twist(L) we use machine ML and add one further pushdown storeto obtain machine MK that accepts K as follows: MK reads the symbols at odd positions7



of an input string w 2 K, beginning with the �rst symbol of w and behaves on themexactly as the machine ML. Beginning with the second symbol of w the symbols at evenpositions alternatively are pushed onto the new pushdown. After having read the lastsymbol of the input string the symbols from the pushdown are popped and now treated asinput for the machineML. MK accepts if the new pusdown is emptied and ML accepts itsinput twist�1(w). Hence, MK accepts twist(L) and operates on each pushdown with onlyone reversal. It must be observed thatMK works in linear but not in quasi-realtime. Thatthis is not a loss follows from a result in [BoNP 74] stating that the classM\(dMIR \ f�g )is closed with respect to linear erasing homomorphisms.Lemma 4 showed Mtwist(dMIR [ f�g) � M\(dMIR [ f�g) and by the following re-sults we will be able to prove equality of these two classes. Since the family lin Cf=M(dMIR [ f�g) =M(MIR) is not closed w. r. t. product it will not simply follow fromLemma 2 that Mtwist(dMIR [ f�g) is indeed intersection-closed.2.5 LemmadMIR � dMIR 2 Mtwist(dMIR [ f�g) for dMIR := fw j w 2 dMIRg.Proof: Let L1 := fck11 w ck22 v c3 vrev ck44 wrev c5 j w 2 fa; bg�; v 2 fa; bg�; k1; k2; k4 2IN n f0gg 2 lin Cf = M(MIR) � Mtwist(MIR). Then let L2 2 Mtwist(MIR) be de�nedby L2 := twist(L1)\R1, where R1 := fc1c5g � (fc1gfa; bg)� � fc1c4g � (fa; bgfc4g)� � fc2c4g �(fc2gfa; b; c3g)�fc2c4g. One observes L2 = fc1c5c1w1c1w2 � � �c1wnc1c4w1c4w2 � � �c4wnc4c2�c4c2v1c2 � � �vmc2c3c2vmc2vm�1 � � �c2v1 j wi 2 fa; bg and vj 2 fa; bgg and from this L3 :=n$1w$2w$3v$4vrev$5 j w 2 fa; bg� and v 2 fa; bg�o 2 Mtwist(dMIR [ f�g) follows easily.By a similar technique we will �nally get the stated result:Let L4 := f$k11 w$k22 w$k33 v$4vrev$5 j w 2 fa; bg� and v 2 fa; bg�; k1; k2; k3 2 IN n f0gg 2M(L3) and L5 := twist(L4)\R2, where R2 := fc1c5g�(fc1gfa; b; c4g)��fc1c3g�(fa; bgfc3g)��fc2c3g � (fc2gfa; bg)� � fc2c3g. One gets L6 := f$1v$2vrev$3w$4wrev$5 j v 2 fa; bg� and w 2fa; bg�g 2M(L5) and �nally dMIR�dMIR 2 M(L6) �Mtwist(dMIR [ f�g) =Mtwist(MIR).Now, given two languages L1; L2 2 Mtwist(dMIR [ f�g) we know that each of them isobtained by �nitely many applications of a-transducer mappings (each represented by triooperations) and the operation twist in any order. Our goal is to show, that each of thissequences op1 and op2 that are applied to the generator dMIR can be replaced by onesequence of operations which simulates these sequences on each single component of thegenerator dMIR � dMIR � fa; bg� � fa; bg�. Since this is easy as long as only a-transducermappings are used we have to show that also twist can be applied separately to each singlecomponent. This will be proved in Lemma 6 below.2.6 LemmaLet L 2 Mtwist(L) such that L := L1 � L2 for L1 � ��1; L2 � ��2 with �1 \ �2 = ;. Then8



K1 �K2 2 Mtwist(L) for each choice of Ki 2 fLi; Lrevi ; twist(Li)g; i 2 f1; 2g.Proof: With L1 � L2 2 Mtwist(L) also L3 := fc1g�L1fc2g�L2 2 Mtwist(L). ThenLrev2 � L1 = f�1(twist(L3) \ (c1�2)�(�1c2)�) for f(x) := ( c1x ; if x 2 �2xc2 ; if x 2 �1 . Now, byLemma 1 also(a)Lrev1 � L2 = (Lrev2 �L1)rev 2 Mtwist(L).Starting with L4 := L1fc2g�L2fc3g� 2 Mtwist(L) one easily shows(b)L1 �Lrev2 2 Mtwist(L) by the same technique.L5 := twist(L1 � L2 � fc3g�) \ (�1c3)���2 is the basis for proving(c)L1 � twist(L2) 2Mtwist(L).Starting with L1 � L2 2 Mtwist(L) we �nd Lrev2 � Lrev1 2 Mtwist(L) since a twist-closed trio is closed under reversal. Applying (b) yields Lrev2 � L1 2 Mtwist(L), (c) givesLrev2 � twist(L1) 2 Mtwist(L), and a reversal followed by application of (a) �nally yields(d)twist(L1) � L2 2 Mtwist(L).All other combinations stated in the lemma are now obtainable from combinations ofcases (a) to (d).As described in the motivation before Lemma 6 we can now apply any �nite sequenceof applications of trio operations (a-transducer mappings) and/or twist to the two com-ponents speci�ed by the two generators from L for a language L = L1 �L2 2 Mtwist(L) inorder to verify Theorem 7 with the help of Lemma 6:2.7 TheoremIf L is closed with respect to product then Mtwist(L) is closed under product, too.Since we know dMIR � dMIR 2 Mtwist(dMIR [ f�g) = Mtwist(MIR) by Lemma 5 weobtain immediately:2.8 CorollaryThe family Mtwist(MIR) is closed with respect to product.Combining Lemma 2, Corollary 8, and Lemma 4 we get the main result:2.9 TheoremMtwist(MIR) =M\(MIR)A consequence of this new characterization of the family of languages accepted in9



quasi-realtime by reversal-bounded on-line multipushdown machines we �nd a new char-acterization of the recursively enumerable languages:2.10 CorollaryRe = M̂twist(MIR)In what follows we want to show how to homomorphically represent the recursivelyenumerable languages by twisting linear context-free languages. It is well known and easyto show that any intersection-closed trio is closed w.r.t product but closure under twistgenerally depends on the generator of this trio. It is known that each intersection-closedtrio is also closed with respect to shu�e.The proof of this theorem is similar to the one of Theorem 1 in [BaBo 74] and canmore easily be described by using the operation of literal shu�e.2.11 TheoremA language L is recursively enumerable if and only if there exists a linear context-freelanguage K 2 lin Cf and homomorphisms f and g such that L = g(f�1(twist(K))).Proof: Let M be a deterministic Turing machine with state set Z accepting L � ��without loss of generality in such a way that all and only the halting con�gurations arethe accepting ones. Each con�guration will be represented by an instantenous description(ID) of the form uqv , where uv is the current string over the tape alphabet of M , q 2 Zis a state of M , and q 's position in uqv indicates that M is in state q while reading theleft-most symbol of v . Initial IDs are strings q0w, where q0 is the initial state of M andw 2 �� is the input of the Turing machine.Let K be the set of strings of the form ID0$ID1$ � � �$IDk�1$IDk $jc ID0 revk jcID0 revk�1 jc� � � jcID0 rev1 jcID00 rev0 , where $ and jc are distinguished symbols used as markers, ID000 :=h(ID0) encodes the initial con�guration ID0 of the TM M and uses a di�erent copy� := h(�) of the alphabet � which is used in all the other IDs. This is because all butthe initial ID �nally have to be deleted. The coding h will act as the identity on theset Z of states. ID0k describes a �nal con�guration of M . Also, for 1 � j � k no IDjneeds to be identical to ID0j , but if for some i 2 f0; : : : ; k � 1g IDi$ is a substring of theset K then jcID0 revi+1 is the corresponding substring of K if and only if ID0i+1 representsthe con�guration of M reached in one step from that represented by IDi. That K is infact a linear context-free language is easily veri�ed, since the set of all strings of the formIDi $jc ID0 revi+1 for which IDi `M ID0i+1 holds clearly is an element of lin Cf . The iteratedsubstitution of this language between the $ and jc symbol in the middle obviously will belinear context-free again. The set of the descriptions of initial instantenous descriptionsID00 rev0 is regular as is the set of IDs of the form IDk in the middle. Hence, K 2 lin Cffollows.Now, twist(K) contains, among others, strings of the form (ID0 ttlit ID000)$jc(ID1 ttlit ID01)$jc(ID2 ttlit ID02)$jc � � � $jc(IDk ttlit ID0k)$jc. It will be guaranteed by applying10



an inverse homomorphism, that only those strings from twist(K) will be taken for whichjID0j = jID000j ; h(ID0) = ID000, and 8i 2 f1; : : : ; kg : jIDij = jID0ij ; IDi = ID0i.Let f : (� [ � [ Z [ f#g)� �! (� [ � [ Z [ f$; jcg)� be de�ned by:f(x) := 8><>: yx ; if x = h(y) 2 �xx ; if x 2 � [ Z$jc ; if x = # .Then f�1(twist(K)) =8><>: h(ID0)#ID1# � � �#IDk# ������� ID0 is an initial ID of M ;8i 2 f1; : : : ; kg : IDi�1 `M IDi;and IDk is an acepting ID: 9>=>;.Now, let g : (�[�[Z[f#g)� �! �� be a homomorphism that erases the symbols fromthe set �[Z[f#g and acts as h�1 on the set � = h(�). Then, �nally g(f�1(twist(K))) =L = L(M), since g extracts the input string of the Turing machine M from its initialcon�guration encoded by the pre�x h(ID0) in f�1(twist(K)).Corollary 10 which is similar to the characterizations presented in [BaBo 74], [Salo 81]and [Enge 96] can now be obtained from Theorem 11 by a more direct construction insteadof using the new characterization of the family M\(MIR).In [JaPe 94] it was proved that the family M\(D1) = PBLIND(n) is closed withrespect to twist . We will now show that for each k � 1 the family M(Ck) of languagesaccepted by blind k-counter machines in realtime is twist-closed, too. To do this letus recall that each blind k-counter machine M can easily be described by a �nite statetransition diagram in which a directed arc from state p1 to p2 is inscribed by the inputsymbol x to be processed and a vector � 2 f+1; 0;�1gk used for updating the countersby adding � to the current contents C1 2 0ZZ0k of the counters . This will be written asp1 x�!� p2. A string w = x1x2x3 � � �xn�1xn; xi 2 � is accepted by M , i� there exists apath in the transition diagram of the form q0 x1�!�1 q1 x2�!�2 q2 x3�!�3 q3 � � �qn�1 xn�!�n qn, whereq0 (qn) is an initial (resp. �nal) state and �ni=1�i = 0 in each component. The machinestarts with empty counters and accepts only when all counters are zero again. It is easyto construct a blind k-counter machine M2 that accepts Lrev from the machine M1 thataccepts L 2 M(Ck): One just has to revert the arcs in the state transition diagram ofM1 and exchange the sets of �nal and initial states. Now it is not di�cult to show thatM(Ck) is twist-closed for each k � 1.2.12 Theorem8k 2 IN; k � 1 :Mtwist(Ck) =M(Ck).Proof: Let L 2 M(Ck); L � ��, then there exists a blind k-counter machine M whichaccepts L = L(M) in realtime. In order to accept the set twist(Le) we modify the machine11



M to a new machine Mtwist as follows: Let Q (Q0, and Qf ) be the set of states ( initialand �nal states, resp.) of the machine M , then Qtwist := Q2� fo; eg is the set of states ofMtwist. The sets of initial (and �nal) states Q0;twist (Qf;twist, resp.) ofMtwist are given byQ0;twist := f(p0; pf ; o) j p0 2 Q0; pf 2 Qfg and Mf;twist := f(p; p; o); (p; p; e) j p 2 Qg. Letw 2 L; w = x1x2x3 � � �xn�1xn; xi 2 � be a string of length jwj = n which is accepted byM in a sequence of transitions q0 x1�!�1 q1 x2�!�2 q2 x3�!�3 q3 � � �qn�1 xn�!�n qn. The new machineMtwist now uses the �nite control of M in the �rst components of the elements in Qtwistin each odd step beginning with the �rst move, while it is used every second (even) stepin the second components backwards. The sequence of transitions of Mtwist acceptingtwist(w) now would be0B@ q0qno 1CA x1�!�1 0B@ q1qne 1CA xn�!�n 0B@ q1qn�1o 1CA x2�!�2 0B@ q2qn�1e 1CA xn�1�!�n�1 � � � xbn2 c+1�!�b n2 c+1 0B@ qdn2 eqdn2 ex 1CA ;where x 2 fo; eg depends on the length of the input string:The last step in this computation is 0B@ qn2qn2+1e 1CA xn2 +1�!�n2 +1 0B@ qn2qn2o 1CA, if n is even, and is0B@ qbn2 cqdn2 eo 1CA xdn2 e�!�d n2 e 0B@ qdn2 eqdn2 ee 1CA, otherwise.Conversely, every accepting computation in Mtwist can be unfolded to yield a validcomputation in M showing that only strings of the form twist(w); w 2 L(M) are acceptedby Mtwist.2.13 Corollary8k 2 IN; k � 1 :Mtwist(Bk) =M(Ck).Proof: From Lemma 12 and Bk 2 M(Ck) we see Mtwist(Bk) � M(Ck). To showthe converse we have to verify Ck 2 Mtwist(Bk). Let jc 62 �k and the homorphism hjc :(�k [ fjcg)� �! ��k be de�ned by h(x) := x, if x 2 �k and h(jc) := �. Then Lk :=twist(h�1(Bk)) \ fjcbi; aj jc j bi; aj 2 �kg� is an element of Mtwist(Bk) and the pairs jcbi; aj jcmay appear in any order for all 1 � i; j � k. Hence, applying the inverse homomorphismg : ��k �! (�k[fjcg)� with g(ai) := ai jc and g(bi) := jcbi we see Ck = g�1(Lk) 2 Mtwist(Bk).Greibach showed C1 2 M(B3) in [Grei 78]. We want to show that it is su�cient touse only one more counter to accept Ck using only k+1 partially blind reversal-boundedcounters. This should also be compared with Theorem 1 in [Hrom 85].12



2.14 Theorem8k 2 IN; k � 1 :M(Ck) �= M(Bk+1).Proof: "�". Let Ck be accepted by some blind k-counter machine working in realtime.The new reversal-bounded (k+1)-counter machine Mk+1 is given as follows: One counter,call it z0, is used to non-deterministically �nd the middle of each string w 2 Ck by adding1 in each step when reading a pre�x u of w = uv. We call this the �rst phase of thework of Mk+1. Then, non-deterministically this phase is stopped and in the following,second, phase the counter z0 is decreased by 1 in each and every step. One has juj =jvj = jwj2 if and only if this counter reached zero after reading the last symbol of w. Allother counters z1 to zk are treated di�erently in the �rst and the second phase of Mk+1'scomputation: If � = (�1; : : : ; �k) is a counter-update used in the �rst phase of Mk, then�0 := (�1 + 1; : : : ; �k + 1) 2 f2; 1; 0gk is the non-decreasing counter-update in Mk+1 to beused instead. Likewise, if � = (�1; : : : ; �k) is a counter-update used in the second phaseof Mk, then �0 := (�1� 1; : : : ; �k� 1) 2 f�2;�1; 0gk is the non-increasing counter-updateto be used in Mk+1 instead. Since the �rst and the second phase consist of equally manysteps, the overall change of the counters is zero again, and exactly the strings form Ckare accepted using k+1 reversal-bounded partially blind counters. Since the new counter-updates now are elements of f�2;�1; 0; 1; 2gk+1 and not of f�1; 0; 1gk+1 we have to modifythe machine Mk+1 by splitting moves that increase (or decrease) a counter by 2 into twomoves that increase (or decrease) this counter by 1 and all other counters are treated asbefore in the �rst step and stay stationary in the second step. This modi�cation givesa partially blind (k+1)-counter machine that accepts Ck in quasi-realtime and with onereversal on each of its counters, hence M(Ck) �M(Bk+1).In order to see the strictness of this inclusion we use known results from Ginsburg,[Gins 75], Greibach, [Grei 76], or Latteux, [Latt 78, Latt 79], where it was shown thatBk+1 \ k+1Qi=1faig�fbig� is not an element of M(Ck), hence M(Ck) �= M(Bk+1) for eachk � 1.Consequently, Si�0M(Ci) =M\(C1) forms a strict hierarchy of twist -closed semiAFLsand therefore cannot be principal as twist-closed semiAFL.The language Ek := fan1an2 � � �ank j n 2 INg was used to separate the classes M(Ck) �=M(Ck+1), see [Latt 77, Latt 78, Latt 79], by proving E2k+1 62 M(Ck). Ginsburg, [Gins 75]Example 4.5.2, has shown M(Bk) �= M(Bk+1) and in [Grei 76, Jant 79a] it was shownthat Bk+1 62 M(Dk). Kortelainen has shown in [Kort 80] Theorem 2.2.2, that Ek+1 62F(COMk), where COMk denotes the class of commutative languages over an alphabet ofk symbols. Note, M(Ck) �= M(COM2k).We conjecture the following sharpening of the above results: M(Bk) �= M(Ck), for allk 2 IN; k � 1.M(B1) �= M(C1) can be shown easily: M(B1) � M(LCF) but M(C1) 6� M(LCF ),and only M(Bk) �M(Ck) is obvious. 13
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