Linear Bidirectional Parsing for a Subclass of
Linear Languages

Stefan ANDREI ¥ Manfred KUDLEK

Abstract

In this paper, our intention is to describe a useful subclass of lin-
ear grammars, called LLin(m,n). We have denoted them in such a way
because they are similar to the class of LL(k) grammars ([1], [7]), and
correspond to the linear grammars. Intuitively, “looking ahead” to the
next m terminal symbols and “looking back” to the previous n terminal
symbols is enough to determine uniquely the production which has to
be applied. The membership problem for LLin(m,n) grammars can be
solved using a linear time complexity algorithm.

In the first section, we present some general properties of such gram-
mars, such as unambiguity, a hierarchy of them, a comparison to LL(k)
grammars, recursiveness and closure properties. We have to notice that
there exist non-deterministic languages which can be generated by this
new class of grammars.

In the second section, we give a characterization theorem for such
grammars (somehow similar to the LL(k) grammars). Next, we describe
a bidirectional parser for LLin(m,n) grammars.

The third section treats LLin(1,1) grammars. One of the main point is
that the auxiliary function first_last can be computed using a polynomial
time complexity algorithm. In this way, we can easily decide whether or
not a linear grammar is LLin(1,1).

Keywords: linear and LL(k) grammars, bidirectional parsing

Mathematics Subject Classification: 68Q50, 68Q52, 68Q68.

*Faculty of Informatics, “AlI.Cuza” University, Str. Berthelot, nr. 16, 6600, Iasi,
Roménia. E-mail: stefan@infoiasi.ro. This work was supported by The World Bank/Joint
Japan Graduate Scholarship Program.

tFachbereich Informatik, Universitdt Hamburg, Vogt-K&lln-Strafe 30, 22527, Hamburg,
Germany. E-mail: kudlek@informatik.uni-hamburg.de

Linear Bidirectional Parsing for a Subclass of Linear Languages 2

1 LLin(m,n) Grammars. General Properties

In this paper, we define a new subclass of linear languages, for which the mem-
bership problem can be solved using an algorithm which has linear time com-
plexity. For the general class of linear languages, it is known that w (an arbitrary
word, n = |w|) can be parsed in time proportional to n? ([2]). We know that
every sentential form of a linear grammar contains at most one nonterminal
symbol. Using this property, our subclass of linear grammars is a generalization
of LL(k) grammars. The difference is that for the new subclass, the parsing is
done from both sides of the word.

Before giving the definition of the new subclass of grammars, we give a list
of definitions and notations which we will use in that paper.

Definitions:

e context free grammar: G = (Vy, Vr, S, P), where:

— Vn - the set of nonterminal symbols;

— Vr - the set of terminal symbols;

— V = VN UVr - the set of symbols of G;
S - the start symbol;

— P C Vn x V* - the set of productions. A pair (4,8) € P is
called A—production and it is denoted by A — (. The produc-
tions A — 31, A = Ba,..., A — [will (sometimes) be denoted

byA—>ﬂ1‘52||ﬂk
¢ empty word:) (the word of length 0);

e linear grammar: is a context free grammar for which the set of produc-
tions satisfies P C Vn x (V#(Va VU {A}));

e derivation in G: « ? Bif3 A€ aand A— r € P such that

a = a; Aas, B = B11 B2; the transitive (reflexive) closure of the relation
*

—» is denoted by = (==);
G G G
e X is an accesible symbol in G if there exists a derivation S :;> aXp,
a, B eV

e A € Vy is productive if there exists a derivation A :;> u, with u € Vz

(the other nonterminal symbols are called useless);

e (G is areduced grammar if all symbols are accesible and all nonterminal
symbols are productive;

e the set of sentential forms of the grammar G:

S(G):{aev*us:g»a}.

Linear Bidirectional Parsing for a Subclass of Linear Languages 3

¢ the language of the grammar G: L(G) ={w eV} |3 S :;> w} (in
fact, L(G) = S(G) N V3).

Notations:

¢ nonterminal symbols: S (start symbol), A, B, ...

e terminal symbols: a, b, c, ...

e symbols (terminal or nonterminal): X, Y, ...

e terminal words: u, v, z, y, w, ...

e words (over terminal and nonterminal symbols): a, 3, 7 ...

e derivations: :é> means that the production r was applied in G; :g> refers

to a sequence of productions (syntactic analysis);
e let w = wy ws ... wy be a word over V. Then

_ (m)y = {wk_m_H Wh—mt2 - Wi ifm <k

w otherwise
_w(n):{wlwg...wn ifn<k
w otherwise

e N denotes the set of natural numbers, Nt denotes the set of strict positive
natural numbers.

Definition 1.1 Let G = (Vn,Vr, S, P) be a linear grammar. We say that G is
LLin(m,n), m, n € N, if for any two derivations of the form

S= uAv=—ufiv=— uzv
G G G

Szg>uAv:G>u62v:G>uyv
with u, v, z, y € Vi, for which 2 =y and Mg = My then B = Bo.

Intuitively, this definition means for linear grammars that: Given an arbi-
trary sentential form, “looking back” to the previous n terminal symbols and
“looking ahead” to the next m terminal symbols, we can decide uniquely which
production has to be applied (Figure 1). According to this definition, overlap-
ping of symbols is allowed.

Definition 1.2 We say that the language L C Vi is LLin(m,n) if there exists
a LLin(m,n) grammar G for which L = L(G).

Linear Bidirectional Parsing for a Subclass of Linear Languages 4

S
u
v
T X -—
m symbols n symbols
Figure 1

The next example contains some representative linear languages which can
be expressed using LLin(m,n) grammars.

Example 1.1
e G = ({S},{a,b,c},S,{S = aSa|bSb|c}) is LLin(1,1) and, of course,
L(Gy) ={wcw | w € {a,b}"};
o Gy = ({S},{a,b,c},S,{S—aSalaSb|bSa|bSb|c}) is LLin(1,1) and
L(G2) = {wicws | w € {a,b}*, |wi| = |wa|};
e G5 =({S},{a,b,c},S,{S—aaSaalabSablabSba|baSablbaShba]|

bbSbb|c}) is LLin(2,2) and L(G3) = {wicws | w € {a,b}*, |w1| =
|lwa| = even, Ny, (a) = Ny,(a) and Ny, (b) = N,,(b)}, where Ny, (a)
denotes the number of symbols ‘a’ from wy;

e Gy = ({S,4},{a,b},5,{S — aS|Ab, A — Ab|A}) is LLin(1,1) and
L(G4) ={a"b™ |n >0, m>1};

o G5 = ({S,A},{a,b,c},S,{S—=aSa|A, A—=bAb|c}) is LLin(1,1) and
L(Gs) = {a™bt™cb™a" | n, m > 1};

Linear Bidirectional Parsing for a Subclass of Linear Languages 5

e G¢ = ({S,4,B},{a,b},5,{S = Ac|B, A— aAbblabb, B— aBb|ab})
is LLin(2,1) and L(Gg) = {a"b*"¢c, a™b" | n > 1};

Given a context-free grammar G, a derivation is called left most (denoted
by l:>)) if in every sentential form (using a production from G) the first occur-
m

rence of a nonterminal symbol is replaced. A context-free grammar G is called
ambiguous if there exists a word w € Vg for which there exist at least two

distinct left most derivations S :;> w.

A linear grammar may be ambiguous. For example, let us consider the linear
grammar GG given by the productions:

1. S—aS
2. 55— Sa
3. S—a

For the word w = a a a, there exist two left (or right) most derivations:

S=—aS=—=aSa=—aaa
G G G

S=Sa=aSa=aaa
G G G

So, we conclude that G is an ambiguous linear grammar.

Next, we shall show that the subclass LLin(m,n) contains only unambiguous
grammars.

Theorem 1.1 Every LLin(m,n) grammar is unambiguous.

Proof Consider G = (Vn, Vr, S, P) being LLin(m,n) grammar and suppose
that it is ambiguous. This means, that there exists a word w € L(G) such that
we can construct two distinct derivations (in G):

S=—ay—= a1 —= ay—= ... = qp =W
Im Im G Im

S=ﬂ0=>,31=>,32:...=>ﬁkl=w
lm lm G Ilm

We shall show by induction on ¢ that a; = 8;, V ¢ > 0. The basis of induction
(1 = 0) is clear.

Let us suppose that a; = 3;, V0 < j < i. We have to prove that aj11 = Biy1.
Because G is a linear grammar (all derivations are also left and right most), we
can rewrite the previous derivation such as:

S= i=uAv=uNnv = uzv=w
G G G

S =B =udv— uyv—uyv=w
Gﬂz = UV =2 uy

Linear Bidirectional Parsing for a Subclass of Linear Languages 6

From uzv = w and uyv = w, it follows that = y. Therefore, ™z =(m) y
and z(") = y(”). Thus, v1 = 92, 50 ;41 = uy1v = uyv = B;11. Hence,
a; = Bi, V0 <4 < min(k,k"). But ay = B = w, so k = k'. Therefore the
assumption that G is ambiguous is false. |

We shall denote the set of LL(k) linear grammars by LLin(k). We may easily
observe that the class of LLin(1,1) grammars is bigger than LLin(1) grammars.
For instance, Gy (from Example 1.1) is LLin(1,1), but not LLin(1).

Lemma 1.1 Fvery LLin(k) grammar is a LLin(k, k') grammar, ¥V k' > 0.
Proof Directly from the definitions. |

Lemma 1.2 IfG is a LLin(m,n) grammar, then G is a LLin(m',n') grammar,
where m' > m, n' > n.

Proof Directly from the definitions. |

Theorem 1.2 For all m,n > 0, the class LLin(m,n) is properly included in
the class LLin(m',n'), ¥V m' > m, Vn' > n.

Proof The fact that LLin(m,n) is included in LLin(m',n') is obvious, where
m' > m, n' > n (Lemma 1.2). It remains to show that the inclusion is proper.
Let us consider the following linear grammar:

G: S—>amb”|am’b", (m' >m, n' >n)

It is obvious that G is LLin(m',n'), but not LLin(m,n) (of course, we have
(m' —=m)2+ (n' —n)? £0). |

Theorem 1.3 There exist linear languages which are not LLin(m,n), for any
m, n € N.

Proof Let us consider the linear language L = L; U Ly, where
Ly ={a*cb" | k > 1} and Ly = {a" db®* | k > 1}.
For instance, L can be generated by the linear grammar G3:
e S—A|B
e A—adblc
e B—aBbb|d

Let us suppose, by contrary, that there exist m,n € N and G € LLin(m,n)
such as L(G) = L. Let us denote i = max(m,n) and the words w; = a’cb,
ws = a' db® which belong to Ly, respectively Lo. Because L = L(G), then there
exist the derivations:

S =;> alcht

Linear Bidirectional Parsing for a Subclass of Linear Languages 7

S = a'db*
G

It is obvious that (™w; =(M) w, and w§”> = wgn), so this means that the first
production applied in the above derivations is the same. Let a* Ab/ be the last

sentential form for which:

S=a" A = "BV = aFa' P b = wy
G G G
S :;> af Ab :G> a® By b :;> ab o F db* I Y = w,

and (Mgi=kcpi=i =(m) gi=k dp2i-j ai=k ebi=i™ = i~k gp2i—i" Because
G is LLin(m,n) it follows that 8; = (2. But during the following derivation
ak Ab7 =;> a* ai=* ¢ b*~7 b/ only productions corresponding to L; will be applied
(which are distinct from productions corresponding to Lo, L1 N Ly = 0). So,
we obtain a contradiction because A — ;1 = A — (5. Therefore G is not a
LLin(m,n) grammar. |

If o = ajas...ap is a word over V, then & = aj...a2 ap is called the
reverse (mirror) of a. If G = (Vn,Vr, S, P) is a context-free grammar, we

shall denote by G = (Vy,Vr, S, P) its reverse (mirror) grammar, where
P={A-p|A—pcP}

Corrolary 1.1 The following facts hold:

e G is LLin(m,n) grammar zﬁé is LLin(n, m) grammar, i.e. the class of
LLin(m,n) grammars is closed under mirror image, V. m >0, n > 0;

(
)
e G is LLin(m,0) grammar iff G is LLin(m) grammar;
(

e G is LLin(0,n) grammar zﬁé is LLin(n) grammar.

Proof Directly from the definitions and the fact that G is also linear grammar,
where G is a linear grammar. |

Definition 1.3 Let G = (Vn,Vr, S, P) be a context-free grammar. We say
that:

e A € Vy isleft-recursive, if there exists a derivation A % Ao, a eVt

e A € Vy is right-recursive, if there exists a derivation A % B A, where
BeVH

e G isleft (right) recursive grammar if there exists A € Vi a left (right)
recursive symbol.

Linear Bidirectional Parsing for a Subclass of Linear Languages 8

It is known that a left-recursive grammar cannot be LL(k) ([6], [5]), for any
k > 0. However, there exist some procedures to transform left-recursion into
right-recursion. In comparison with LL(k) grammars, the LLin(m,n) gram-
mars can be left-recursive, even right-recursive (like G4 from Example 1.1), but
not for the same nonterminal symbol.

Theorem 1.4 If the reduced linear grammar G contains a left and right recur-
sive nonterminal symbol A, then G cannot be LLin(m,n), ¥ m,n € N.

Proof Let A be a left and right recursive symbol. Because G is linear grammar,
this means that there exist the derivations:

A:}Av’, A:Jc}u’A, u', o' e Vi

Without loss of generality, we suppose that the first distinct productions applied
in the above derivations are:

A— Bviand A — w1 C

Now, because G is a reduced linear grammar, it follows that there exists a
derivation:
S =;> uAv

Now, we suppose that there exist m,n € N such as G is LLin(m,n). Continuing
the above derivation, we may write:

S=Z udv=uzviv=>udv'v=>uv' Av' v == ... == u ()" A@")" v
G G G G G G
S :;> uAv = uuryv :2) uu' Av :;> uu' Av'v :;>..:+>u(u’)m+1A(v')”+lv

But (m) ((ul)mA(,Ul)n) —(m) ((u/)m+1 A(’U')n'H) and ((u' mA(,U/)n)(n) —
= (()™* A (v’)"“)(n . Using the fact that G is LLin(m,n), it follows that

A — B coincides with A — u; C (a contradiction !).
Therefore G cannot be LLin(m,n), ¥V m,n € N. |

The class of LLin(m,n) grammars can generate some classical non-determi-
nistic languages ([4]), such as L = {a" "¢, a"b" | n > 1}. For instance, Gg
from Example 1.1 can generate this language.

Proposition 1.1 (The Pumping Lemma for Linear Languages, [8])

For every linear language L C Vi, there exists a natural number N, depend-
ing only on L, such that if z € L with |z| > N then there exist u,v,w,z,y € V7
for which the following conditions are fulfilled:

(a) z=uvwzy;

(b) |vz| >0

Linear Bidirectional Parsing for a Subclass of Linear Languages 9

(c) luvzy| < Nj
(d)Vi>0: uviwziy e L.

Theorem 1.5 (closure properties) LLin(m,n) is not closed under:

(1) union

(i) intersection

(111) catenation

(1v) homomorphism

Proof

(i)

(iii)

(iv)

Let G1 = ({S},{a,b,c},S,{S = aSb|c}) and G2 = ({S},{a,b,d}, S,{S —
aSbb|d}) be two LLin(1,0) (or LLin(0,1)) grammars. Obviously, we
have L(G1) = {a*cb* | k > 1} and L(G2) = {a*db®** | k > 1}. The
language L(G1) U L(G2) is not a linear language (proof of Theorem 1.3);

Consider G1 = ({S, A}, {a,b,c},S,{S = Sc|A, A — aAb|ab}) and
G2 = ({S, A}, {a,b,c},S,{S—aS|A, A—bAc|bc}) be two LLin(0,2)
and LLin(2,0) grammars, respectively. So L(G1) = {a"b"c™ | m,n >
1} and L(G2) = {a™b"c™ | m,n > 1}. Then the intersection of these
languages L(G1) N L(G2) = {a™b"c" | n > 1} is not a context free
language (nor linear, of course) ([2], [3], [6]);

Let G = ({S},{a,b},5,{S — aSb|ab}) be a LLin(2,0) (or LLin(0,2))
grammar. We obtain L(G) = {a"b™ | n > 1}. We shall prove that the
language L(G) - L(G) = {a” b™a™ b™ | m, n > 1} is not linear. Denoting
L = L(G) - L(G), we suppose, by contrary, that L is a linear language.
Applying the pumping lemma for linear languages, we can choose the word
z = a¥ bV o™ bV which belongs to L. Then uv € {a}* and zy € {b}*
because of (c) condition. This implies that there exist i1, i3, i3, 14 € N,
ia +1i3 > 1 (because of the (b) condition) such that:

u=a, v=a®, w=aV RN NNl g —pis g = pi4,
Using the condition (d) and choosing, for instance, i = 0, we obtain that
vwy € L, i.e. aV"2bN VbV € L. Since iy + i3 > 1, we get neither
N —iy # N, nor N — i3 # N. Therefore a™¥ ~% b"V o’V bV~ cannot belong
to L.

Let G = ({S, A, B},{a,b,c,d,e, f},5,{S - A|B, A — aAb|e, B —
eB f f|d}) be a LLin(1,0) (or LLin(0,1)) grammar. Obvious, the lan-
guage generated by it is L(G) = {a*cbF, d*e f?* | k > 1}. Now, we
consider the homomorphism defined by h(a) = a, h(b) = b, h(c) = ¢,
h(d) = a, h(e) = d, h(f) = b. This implies that h(L(G)) = L, where L
is the language used in the proof of Theorem 1.3. Because L does not
belongs to the class of LLin(m,n) languages, our class of languages is not
closed under homomorphism.

Linear Bidirectional Parsing for a Subclass of Linear Languages 10
|

2 A Bidirectional Parser for LLin(m,n) Gram-
mars

In this section, we shall define some useful sets of pairs of words. We shall present
a characterisation theorem for LLin(m,n) grammars and a bidirectional parser
for them.

Definition 2.1 Let G = (Vn, Vr, S, P) be a linear grammar, a € V*, # a new
terminal symbol and m,n € N*. We define first,, last,(a) as the union of
the following sets of pairs of words corresponding to a, m, n such as:

o (u,v) ifﬂa:é}u:cv, u,z,v € Vi, |ul =m, |v| =n, luzv| > max{m,n};
o (#zv,v) z'fEIoz:;>acv, z,o € VE, lzv|=k<m, kE>n, |v] =n;

o (u,uz#) ifﬂa%uz, u,z €VHE, uz| =k <n, k>m, |ul =m;

o (#z,2#) ifEIoz=;>a:, zeVs |zl =k, k<m, k<n.

Theorem 2.1 (characterization of LLin(m,n) grammars)
Let G = (Vn,Vr, S, P) be a reduced linear grammar. Then G is LLin(m,n)
grammar iff the following condition holds:

(1) firstm lasty,(B1)N firstm, last,(B2) = 0, VA = p1, A = Ba € P, 1 # Pa.

Proof

(=) Let us suppose that G does not satisfy the condition (1). This means that
there exist two distinct productions A — 51, A — B2 such that the following
relation holds:

firstm_last,(B1) N firsty, last,(B2) # 0.

According to the Definition 2.1, there exist four situations (remind that # is a
new terminal symbol):

1) (u',v'") € firstp-last,(B1)Nfirsty,-last,(B2). Then there exist the deriva-
tions (Ju'| =m, |[V'|=n):

B1 :;>u'acv', z €V},
B =>u'yv', y € V7.

Because G is a reduced grammar, it follows that A is an accesible nonter-
minal, so we obtain the derivations:

S=udv=— ufiv—=—=uu'zv'v
G G G

Linear Bidirectional Parsing for a Subclass of Linear Languages 11

* * ! !
Szg>uszg>uﬁgv:G>uu yv' v
According to the Definition 1.1, it follows that 8; = 3. Contradiction !
2) (#zv',0") € firsty last,(B1)N firsty,_-last,(B2). Then according to Def-

inition 2.1, there exist the derivations (|zv'| = k < m, [v'| =n < k):

B1 :;>mv', z € Vp,

* !
== V.
P2 =
So, again we obtain the derivations:

S=uAv=ufrv=uzv'v
G G G

S=uAv=ufrv = uzv'v
G G G
According to the Definition 1.1, it follows that 8; = 85. Contradiction !
The rest of cases can be solved in an similar way.

(<) Let us suppose that G is not a LLin(m,n) grammar. Then there exist
two distinct derivations:

S= uAv=—ufiv = uzv
G G G

SéuAv:uﬁgvéuyv
G G G

such that z(") = y(™ and (™ z =" y. Then there exist u/, v' € V; such as
|u'| = m, |v'| = n and z = u' 20", y = u' 230". This implies that the pair
(u',v") € firsty-last,(B1) N first,last,(B2). But A — (1 and A — B are
distinct productions (i.e. 81 # B2) in G, so we obtain a contradiction to the
fact that G satisfies the condition (1). |

Theorem 2.1 prove that the following problem is decidable:
“Given a linear grammar G = (Vn,Vr, S, P) and two integers m and n, one
can decide if the grammar is LLin(m,n).”

Next, we shall define a device similar somehow with a deterministic push-
down “transducer”. This will be called the bidirectional parser (syntactic
analyser) attached to the LLin(m,n) grammar G. It scans an “input string”,
one or/and two strings at a time, from left to right or right to left. It can push
or pop strings in the double ended queue (deque) from both sides. In the out-
put tape, it provides the syntactic analysis. It returns with the value “ACC” or
“ERR” depending on whether the input string is accepted or not.

Linear Bidirectional Parsing for a Subclass of Linear Languages 12

Input tape

\i

Control Double ended
queue

\i

Output tape

Figure 2. LLin(m,n) style bidirectional parser

Formally, we give the following definition:

Definition 2.2 Let G = (Vn,Vr, S, P) be a LLin(m,n) grammar. We de-
note by C C #V7i# x V* x {1,2,...,|P|}* the set of possible configura-
tions, where # is a special character (a new terminal symbol). The bidi-
rectional parser (denoted by BP,, ,(G)) is the pair (Co,F), where the set
Co = {(w,S,A) | w e Vi} C C is called the set of initial configurations, and
FC C x C is the transition binary relation (sometimes denoted o)

BPp.n(G)
between configurations given by:

1°. Expand transition:
(#u#, A, \) F (F#u#,8,7r) if r = A — B for which the pair
(Mg, #u™) € first,, last,(B)
20, Reduce transitions:
a) (#vl U#,’Ul Aaﬂ-) F (#u#,A,ﬂ'), v1 € V;
b) (#uv2#3AU2a7T) = (#’U,#,A,ﬂ'), Vg € VT+
c) (#viuvadt,vi Ava,) b (Fu#t, A,m), v1, va € Vi
3%. Acceptance transition:

(##,\,m) F ACC

Linear Bidirectional Parsing for a Subclass of Linear Languages 13

4%, Rejection transition:

(#u#,a,n) - ERR if no transitions of type 1°, 2°, 3° can be applied.

We denote by Ii_ (F) the transitive (reflexive) closure of the above binary

relation - . Sometimes, for a given grammar G, we may denote these closures
+ *
by BPmI;(g) (BP:"(G) respectively).

It is obvious that the bidirectional parser BP,, ,(G) is deterministic, i.e.
for an arbitrary configuration, at most one configuration may be reached. The
only place at which this not so obvious, is at the expand transition 1°. But the
condition (™) (u#), (#u)(n)) € firstm-last,(B) ensures the uniqueness of the
production A — § because G is a LLin(m,n) grammar.

Lemma 2.1 Let G be a LLin(m,n) grammar. Then, the following implications
are fulfilled:

(i) Gosuvat, S,0) | F

p @ (F#u#, X, '), implies S % vy X vg;

(i) (Hu#, 50 F

rl 6 (##, A,), implies S :;> w.

Proof
(i) We proceed by induction on the length of 7'

Basis: |7'| = 0. Thus v; = va = A, A =5, thus obviously S =2> S.

Inductive Step: |7'| > 0. Let us consider 7’ = 7} r, where r = B — 3 is
the last applied production. Denoting v; = v11 v12 and vs = va; V22 we obtain:

*

(#Ul u v, S,)\) = (#011 V12 U V21 V227, S,)\) F (#1)12 U Vo1 H#, Baﬂ)~

1

From the inductive hypothesis, it follows that S % v11 Bvas. Then applying

19, from Definition 2.2, we obtain the configuration (#wv15 uve1 #, 8, m1), where
(™19 w w21, V19 uvé’f)) € firsty-last,(B). The next transitions

(#’[}12u’021#,ﬂ,ﬂ/1 r) 'i (#U#,X, Trl)

BP, o (G)

imply that BP,, ,(G) made only reduce transitions. So, 8 = vi2 X va; (from 2°
a),b),c), Definition 2.2). Now, we may write the derivation:

i
™ r
S = Ui By = v B vz = v11 V12 X V21 V22 = v1 X vy

(ii) Wetakein (i)U:A,X:A, U1 V2 = W, 71":71'_ .

Lemma 2.2 Let G be a LLin(m,n) grammar. Then, the following implications

are fulfilled:

Linear Bidirectional Parsing for a Subclass of Linear Languages 14

A : [
(i) S =G> vy X vy implies (#v1 uva#, S, \) 8P, (@) (F#u#t, X, 7');

i) S = w impli SN F s
(i) S Lo w implies (#u,S3) | F ()
Proof
(i) We proceed by induction on length of 7'
Basis: |7'| = 0. Thus v; = va = A\, A = S, so the following transitions hold:

(#ust, S0 | F (#uk, 5,0,

P (G)

Inductive Step: |7'| > 0. Let us consider 7' = 7} r, where r = B =
is the last applied production which form the sentential form v; X v5. So, the
derivation may be written as:

S % v11 B g :;> v11 V12 X Vo1 V22 = v1 X v
For 7} we apply the inductive hypothesis, so we obtain

(#v11 V12 U V21 V22 F#, S, N) = (#v12 uva1#, B,).
BPp, »(G)

Now, we may continue with expand transition, and obtain the configuration
(#v12 u Va1 #, v12 X v21,] 7). Right now, we apply the reduce transitions a),b),c)
and obtain the configuration (#u#, X, nir) = (#u#, X, 7').

(ii) Wetakein (i)U:A,X:A, U1 V2 = W, 71":7]'_ .

Theorem 2.2 (correctness and complezity of BPpy, »(G))
Let G be a LLin(m,n) grammar. Then

(#wt, S0 F

m,n

F A ; = w.
o) (##, A, m) @ COYfS=w

m,n

Obviously, (#w#, S, \) . Ii @ ERR iff w ¢ L(G). The number of transitions

m,n

of BPy, n(G) has O(|w|) time complexity, where w is the input word.

Proof Both equivalences result directly from Lemmas 2.1 (ii) and 2.2 (ii),
respectively. The time complexity results from the fact that BP,, ,,(G) is defined
over a finite structure (grammar G) and BP,, ,(G) (and syntactic analysis) is
deterministic (no backtrack step is needed). |

In the next section, we shall refer to another practical bidirectional parser,
i.e. for LLin(1,1) grammars (the sets first,,_last, can be computed in poly-
nomial time related to the dimension of the input grammar).

Linear Bidirectional Parsing for a Subclass of Linear Languages 15

3 Bidirectional Parsing for LLin(1,1) Grammars

The LLin(0,0) grammars have the property that there exists no nonterminal
symbols which may be the left side of a production. Obvious, for a reduced
LLin(0,0) grammar, its language is finite, so there is no practical interest.
Also, we don’t consider LLin(1,0) or LLin(0, 1) grammars because they co-
incide with LLin(1) grammars or reverse (mirror) LLin(1) grammars (Corollar
1.1).
We remind to Definition 2.1 for m =n = 1.

Definition 3.1 Let G = (Vn,Vr, S, P) be a linear grammar, o € V*. Then

first_last(a) = {(a,b) | Ja :;> avb, veVy, a, b e VrtU{(\)| a :;> A}

Obvious, Theorem 2.1 becomes:

Theorem 3.1 G is LLin(1,1) grammar iff first_last(B1)N first_last(Bs) = 0,
VA= pe€P,VA— B P, B #po.

The bidirectional parser BP; 1(G) (denoted simply by BP(G)) can also be
reformulated (we present only the transition relation, # being a new nonterminal
symbol):

1° Expand transition:
(#u#, A,) b (#u#,8,7r) if r = A — (8 and the pair
(Vugt, #uV)) € first_last(B)
20, Reduce transitions:
a‘) (#vl U#,’Ul Aaﬂ-) F (#’U,#,A,ﬂ'), v1 € V’I-’i—
b) (#uve#t, Ava,) b (#u#, A,), va € V;
¢) (Fviuvat, v Ava,m) b (Fu#, A,m), v1, 05 € Vg
3%. Acceptance transition:
(##,\,7) F ACC
49, Rejection transition:

(#u#,a,n) - ERR if no transitions of type 1%, 2°, 3% can be applied.

BP(G) may be used in practical compiler applications, because for instance
the computation of the sets first_last(a) (a being right side part of a produc-
tion) can be done in polynomial time complexity related to the dimension of
input linear grammar G.

Example 3.1 Let us review the grammar G4 from Example 1.1.

1. S—aS

Linear Bidirectional Parsing for a Subclass of Linear Languages 16

2. 85— Ab
3. A= Ab
4. A=A

We can easily compute the sets:
o firstlast(aS) = {(a,b)};
o firstlast(Ab) = {(b,b)};
o firstlast(N) = {(3 #)}

According to the Theorem 3.1, it follows that G4 is LLin(1,1) grammar. Let
us now consider the word w = aabbb. The following transitions of BP(G4) can
be:

(#faabbb#,S,\) F (#aabbb#,a S,[1]) F (#a bbb, S,[1]) F

F(#abbb#,a S, [1,1]) F (#bbb#, S, [1,1]) - (#bbb#, Ab,[1,1,2]) F
B (#bb#, A, [1,1,2]) B (#bb#, Ab, [1,1,2,3]) B (#b#, 4,[1,1,2,3]) F
(#b#’ Ab? [17]" 27 3’ 3]) |_ (##’ A? []‘7]" 27 3’ 3]) l_ (##7 A’ []" 17 2’ 37 3’ 4]) l_ AOC

So, w is “accepted” by BP(G4), and then according to Theorem 2.2, it follows
that w € L(Gy).

Next, we define two supplementary functions and two supplementary binary
relations which will be used for determining the sets first_last(a), where a is a
right side part of a production of G. These are first, last: Vy — P(Vr)U{A}
such that:

e a € first(A) iff there exists the derivation A :;> ao;
e a € last(A) iff there exists the derivation A :;> aa;

e)\ e first(A) (or last(A)) iff there exists the derivation 4 =;> A
and begin, end C V x Vy given by:
e X begin A iff there exists the production A — 8 X v and =;> A, where
B eVNU {)\};
e X end A iff there exists the production A — u X 8 and (3 % A, where
B EVNU {A}

The following lemma gives a procedure for obtaining the relations begin and
end.

Lemma 3.1

Linear Bidirectional Parsing for a Subclass of Linear Languages

1) If Y begin™ X then there exists m, m > n such that X :Z> Y a;

2) If X :Z> Y « then there exists m, m < n such that Y begin™ X ;

3) abegin* A iff there exists a derivation A :;> aao;

4) If Y end™ X then there exists m, m > n such that X =Z> aY;

5) If X % aY then there exists m, m < n such that Y end™ X;

6) aend* A iff there exists a derivation A % aay

Proof Obviously, by induction on m or n.
Using Lemma 3.1, it is obvious that:
e a € first(A) iff abegin* 4;

e a € last(A) iff aend* A.

17

The computation of first_last is presented as a returned value of the follow-

ing self-explanatory recursive function.

Input: The linear grammar G = (Vn, Vr, S, P)
Output: firstlast(a), a € V*.

function firstlast(a);
begin
if (a =) then firstlast(a):={(#,#)};
if (a =a, a € Vr) then firstlast(a):={(a,a)};
if (a=apBb, a,be Vr) then firstlast(a):= {(a,b)};
if (a=Aub, A€ Vyn, ueVf, beVr) then begin
first_last(a) := {(a,b) | a € first(A) — {\} };

if (\ € first(A)) then add to first_last(a) the pair ((Vub,b);

end ;
if (a=aud, acVyp, ueV}, A€ Vy)then begin
first_last(a) := {(a,b) | a € last(A) — {A}};
if (\ € 1last(A)) then add to first_last(a) the pair (a,au)
end ;
if (a =A, A€ Vy) then begin
set_chain(A) :={B | A :;> B, Be Vn};
set_fst_snd := {;
for (any A — 8 € P, B € set_chain(A)) do

if (8 ¢ V) then set_fst_snd := set_fst_snd U first_last(B);

first_last(a) := set_fst_snd
end

Linear Bidirectional Parsing for a Subclass of Linear Languages 18

end .

The function first_last needs polynomial time complexity (related to the
dimension of G) because it describes (in a recursive manner) the transitive
closure of the derivation relation from linear grammars.

As we can see in the following example, first_last(a) is properly included
in first(a) X last(a).

Example 3.2 Let G = ({S,A},{a,b,c},5,{S — A, A — aAb|bAa|c})
be a linear grammar. Using, for instance, the function first_last, we obtain
first_last(A) = {(a,b), (b,a),(c,c)}. On the other hand, first(A) = {a,b,c}
and last(A) = {a, b, c}. It results that G is LLin(1,0) (or LLin(0, 1)) grammar.

4 Conclusions

According to the results related to LLin(m,n) grammars, the following picture
is valid:

linear grammars

LLin(m,n) grammars

LL(k) grammars

unambiguous grammars

context-free grammars

Figure 3

Without loss the generality, we allow three modifications of the bidirectional
parser for testing the power of the device defined in Definition 2.2:

(i) we allow reading (and replacing) at the ends of the deque of two consec-
utive symbols (instead of only one);

(ii) we allow to interchange the contents of that two ends of the deque;

(iii) we shall remove the third component, i.e. the syntactic analysis (it does
not interfere in the deterministic transitions).

Linear Bidirectional Parsing for a Subclass of Linear Languages 19

With such modifications, we shall present an example of a bidirectional
parser which can analyse the context sensitive language L = {a" b™ ¢ | n > 1}.
In fact, we shall simulate the monotone grammar given by the following pro-
ductions:

1. A-aABc
2. A—=abc
3.¢cB— Bc
4. bB =+ bb

As a initial configuration, we take (#w#, A), where w € {a,b,c}* is the
input word. Assuming that the notations w and + stand for words (of any
length) over {a, b, c}, and {a,b,c, A, B} respectively, the transitions will be the
following;:

1. (#aawc#, Av) F (#aawc#,a ABcr)
2. (#awc#,avc) b (#w#,7)

3. (#faw#,ay B) F (#fw#,v B)

4. (#abw#,Av) F (#abw#,abcy)

5. (#bwe#, by B) F (#w e,y B)

6. (#bwc#,cycB) b (#bwc#,cyBc)

7. (#bwe#,cByc) F (#bwc#, Beyc)

8. (#bw#, Bvy) b (#bw#,b7)

9. (#bwc#, byc) F (Fw#,v)

10. (#bbwcc#,ccyBB) b (#bbwcc#, Bcy Be)
11. (#bc#,cB) F (#bc#, Bo)

12. (#4,\) F ACC

13. (-,-) - ERR - in the other cases.

Obviously, the above bidirectional parser is deterministic because at each
step at most one transition may be applied. For instance, we may say that
the parser is of type (3,3) because at the transition 11, we need to read three
symbols from the left, and right, respectively.

We conclude that the subclass of £Lin(m,n) is more powerful than some
deterministic context-free languages, keeping the linear time complexity of the

Linear Bidirectional Parsing for a Subclass of Linear Languages 20

algorithm associated to the membership problem. In general, it does not man-
tain the main closure properties. In addition, we can formulate some open-
problems, for instance the closure under complementation, intersection with
regular languages and inverse homomorphism.

References:

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Com-
piling. Volume I: Parsing, Prentice Hall, 1972

2. Harrison, M. A.: Introduction to Formal Language Theory. Addison -
Wesley Publishing Company, 1978

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison - Wesley Publishing Company, 1979

4. Knuth, D.E.: On the translation of languages from left to right. Infor-
mation Control. 8: pp. 607-639 (1965)

5. Knuth, D.E.: Top-down analysis. Acta Informatica. 1: pp: 79-110 (1971)

6. Jucan, T, Andrei, St.: Limbaje formale gi teoria automatelor. Culegere
de probleme. Editura Universitdtii “Al. 1. Cuza”, Tagi, 1997

7. Lewis, P.M., Stearns, R.: Syntax-directed transduction. Journal of the
ACM. 15: pp. 464-488 (1968)

8. Salomaa, A.: Formal Languages. Academic Press. New York, 1973

