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Linear Bidiretional Parsing for a Sublass of Linear Languages 21 LLin(m;n) Grammars. General PropertiesIn this paper, we de�ne a new sublass of linear languages, for whih the mem-bership problem an be solved using an algorithm whih has linear time om-plexity. For the general lass of linear languages, it is known that w (an arbitraryword, n = jwj) an be parsed in time proportional to n2 ([2℄). We know thatevery sentential form of a linear grammar ontains at most one nonterminalsymbol. Using this property, our sublass of linear grammars is a generalizationof LL(k) grammars. The di�erene is that for the new sublass, the parsing isdone from both sides of the word.Before giving the de�nition of the new sublass of grammars, we give a listof de�nitions and notations whih we will use in that paper.De�nitions:� ontext free grammar: G = (VN ; VT ; S; P ), where:{ VN - the set of nonterminal symbols;{ VT - the set of terminal symbols;{ V = VN [ VT - the set of symbols of G;{ S - the start symbol;{ P � VN � V � - the set of produtions. A pair (A; �) 2 P isalled A�prodution and it is denoted by A ! �: The produ-tions A ! �1; A ! �2; :::; A ! �k will (sometimes) be denotedby A! �1 j�2 j ::: j�k:� empty word: � (the word of length 0);� linear grammar: is a ontext free grammar for whih the set of produ-tions satis�es P � VN � (V �T (VNV �T [ f�g));� derivation in G: � =)G � if 9 A 2 � and A! r 2 P suh that� = �1A�2; � = �1 r �2; the transitive (reexive) losure of the relation=)G is denoted by +=)G ( �=)G );� X is an aesible symbol in G if there exists a derivation S �=)G �X�;�; � 2 V �;� A 2 VN is produtive if there exists a derivation A �=)G u; with u 2 V �T(the other nonterminal symbols are alled useless);� G is a redued grammar if all symbols are aesible and all nonterminalsymbols are produtive;� the set of sentential forms of the grammar G:S(G) = f� 2 V � j 9 S �=)G �g.



Linear Bidiretional Parsing for a Sublass of Linear Languages 3� the language of the grammar G: L(G) = fw 2 V �T j 9 S �=)G wg (infat, L(G) = S(G) \ V �T ).Notations:� nonterminal symbols: S (start symbol), A, B, ...� terminal symbols: a, b, , ...� symbols (terminal or nonterminal): X , Y , ...� terminal words: u, v, x, y, w, ...� words (over terminal and nonterminal symbols): �, �,  ...� derivations: r=)G means that the prodution r was applied in G; �=)G refersto a sequene of produtions (syntati analysis);� let w = w1 w2 ::: wk be a word over V . Then{ (m)w = nwk�m+1 wk�m+2 ::: wk if m � kw otherwise{ w(n) = nw1 w2 ::: wn if n � kw otherwise� N denotes the set of natural numbers,N+ denotes the set of strit positivenatural numbers.De�nition 1.1 Let G = (VN ; VT ; S; P ) be a linear grammar. We say that G isLLin(m;n); m; n 2 N, if for any two derivations of the formS �=)G uAv =)G u�1 v �=)G ux vS �=)G uAv =)G u�2 v �=)G u y vwith u; v; x; y 2 V �T , for whih x(n) = y(n) and (m)x = (m)y, then �1 = �2:Intuitively, this de�nition means for linear grammars that: Given an arbi-trary sentential form, \looking bak" to the previous n terminal symbols and\looking ahead" to the next m terminal symbols, we an deide uniquely whihprodution has to be applied (Figure 1). Aording to this de�nition, overlap-ping of symbols is allowed.De�nition 1.2 We say that the language L � V �T is LLin(m;n) if there existsa LLin(m;n) grammar G for whih L = L(G):
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A
S

u vxm symbols n symbolsFigure 1The next example ontains some representative linear languages whih anbe expressed using LLin(m;n) grammars.Example 1.1� G1 = (fSg; fa; b; g; S; fS ! aS a j b S b j g) is LLin(1; 1) and, of ourse,L(G1) = fw  ew j w 2 fa; bg�g;� G2 = (fSg; fa; b; g; S; fS! aS a j aS b j b S a j b S b j g) is LLin(1; 1) andL(G2) = fw1 w2 j w 2 fa; bg�; jw1j = jw2jg;� G3 = (fSg; fa; b; g; S; fS! a aS a a j a b S a b j a b S b a j b a S a b j b a S b a jb b S b b j g) is LLin(2; 2) and L(G3) = fw1 w2 j w 2 fa; bg�; jw1j =jw2j = even; Nw1(a) = Nw2(a) and Nw1(b) = Nw2(b)g, where Nw1(a)denotes the number of symbols 'a' from w1;� G4 = (fS;Ag; fa; bg; S; fS ! aS jAb; A ! Ab j�g) is LLin(1; 1) andL(G4) = fan bm j n � 0; m � 1g;� G5 = (fS;Ag; fa; b; g; S; fS! aS a jA; A! bA b j g) is LLin(1; 1) andL(G5) = fan bm  bm an j n; m � 1g;



Linear Bidiretional Parsing for a Sublass of Linear Languages 5� G6 = (fS;A;Bg; fa; bg; S; fS ! A jB; A! aA b b j a b b; B ! aB b j a bg)is LLin(2; 1) and L(G6) = fan b2n ; an bn j n � 1g;Given a ontext-free grammar G, a derivation is alled left most (denotedby =)lm )) if in every sentential form (using a prodution from G) the �rst our-rene of a nonterminal symbol is replaed. A ontext-free grammar G is alledambiguous if there exists a word w 2 V �T for whih there exist at least twodistint left most derivations S �=)G w.A linear grammar may be ambiguous. For example, let us onsider the lineargrammar G given by the produtions:1. S ! aS2. S ! S a3. S ! aFor the word w = a a a; there exist two left (or right) most derivations:S =)G aS =)G aS a =)G a a aS =)G S a =)G aS a =)G a a aSo, we onlude that G is an ambiguous linear grammar.Next, we shall show that the sublassLLin(m;n) ontains only unambiguousgrammars.Theorem 1.1 Every LLin(m;n) grammar is unambiguous.Proof Consider G = (VN ; VT ; S; P ) being LLin(m;n) grammar and supposethat it is ambiguous. This means, that there exists a word w 2 L(G) suh thatwe an onstrut two distint derivations (in G):S = �0 =)lm �1 =)lm �2 =)G ::: =)lm �k = wS = �0 =)lm �1 =)lm �2 =)G ::: =)lm �k0 = wWe shall show by indution on i that �i = �i; 8 i � 0: The basis of indution(i = 0) is lear.Let us suppose that �j = �j ; 8 0 � j � i:We have to prove that �i+1 = �i+1:Beause G is a linear grammar (all derivations are also left and right most), wean rewrite the previous derivation suh as:S �=)G �i = uAv =)G u 1 v �=)G ux v = wS �=)G �i = uAv =)G u 2 v �=)G u y v = w



Linear Bidiretional Parsing for a Sublass of Linear Languages 6From ux v = w and u y v = w, it follows that x = y: Therefore, (m)x =(m) yand x(n) = y(n). Thus, 1 = 2; so �i+1 = u 1 v = u 2 v = �i+1: Hene,�i = �i; 8 0 � i � min(k; k0): But �k = �k0 = w; so k = k0: Therefore theassumption that G is ambiguous is false.We shall denote the set of LL(k) linear grammars by LLin(k):We may easilyobserve that the lass of LLin(1; 1) grammars is bigger than LLin(1) grammars.For instane, G2 (from Example 1.1) is LLin(1; 1), but not LLin(1):Lemma 1.1 Every LLin(k) grammar is a LLin(k; k0) grammar, 8 k0 � 0:Proof Diretly from the de�nitions.Lemma 1.2 If G is a LLin(m;n) grammar, then G is a LLin(m0; n0) grammar,where m0 � m; n0 � n:Proof Diretly from the de�nitions.Theorem 1.2 For all m;n � 0; the lass LLin(m;n) is properly inluded inthe lass LLin(m0; n0); 8 m0 � m; 8n0 � n:Proof The fat that LLin(m;n) is inluded in LLin(m0; n0) is obvious, wherem0 � m; n0 � n (Lemma 1.2). It remains to show that the inlusion is proper.Let us onsider the following linear grammar:G : S ! am bn j am0 bn0 (m0 � m; n0 � n)It is obvious that G is LLin(m0; n0); but not LLin(m;n) (of ourse, we have(m0 �m)2 + (n0 � n)2 6= 0).Theorem 1.3 There exist linear languages whih are not LLin(m;n); for anym; n 2 N:Proof Let us onsider the linear language L = L1 [ L2, whereL1 = fak  bk j k � 1g and L2 = fak d b2k j k � 1g:For instane, L an be generated by the linear grammar G3:� S ! A jB� A! aA b j � B ! aB b b j dLet us suppose, by ontrary, that there exist m;n 2 N and G 2 LLin(m;n)suh as L(G) = L: Let us denote i = max(m;n) and the words w1 = ai  bi;w2 = ai d b2i whih belong to L1, respetively L2: Beause L = L(G); then thereexist the derivations: S �=)G ai  bi



Linear Bidiretional Parsing for a Sublass of Linear Languages 7S �=)G ai d b2iIt is obvious that (m)w1 =(m) w2 and w(n)1 = w(n)2 , so this means that the �rstprodution applied in the above derivations is the same. Let ak Abj be the lastsentential form for whih:S �=)G ak Abj =)G ak �1 bj �=)G ak ai�k  bi�j bj = w1S �=)G ak Abj =)G ak �2 bj �=)G ak ai�k d b2i�j bj = w2and (m)ai�k  bi�j =(m) ai�k d b2i�j ; ai�k  bi�j (n) = ai�k d b2i�j (n): BeauseG is LLin(m;n) it follows that �1 = �2: But during the following derivationak Abj �=)G ak ai�k  bi�j bj only produtions orresponding to L1 will be applied(whih are distint from produtions orresponding to L2; L1 \ L2 = ;). So,we obtain a ontradition beause A ! �1 = A ! �2: Therefore G is not aLLin(m;n) grammar.If � = �1 �2 ::: �k is a word over V , then e� = �k ::: �2 �1 is alled thereverse (mirror) of �. If G = (VN ; VT ; S; P ) is a ontext-free grammar, weshall denote by eG = (VN ; VT ; S; eP ) its reverse (mirror) grammar, whereeP = fA! e� j A! � 2 Pg:Corrolary 1.1 The following fats hold:� G is LLin(m;n) grammar i� eG is LLin(n;m) grammar, i.e. the lass ofLLin(m;n) grammars is losed under mirror image, 8 m � 0; n � 0;� G is LLin(m; 0) grammar i� G is LLin(m) grammar;� G is LLin(0; n) grammar i� eG is LLin(n) grammar.Proof Diretly from the de�nitions and the fat that eG is also linear grammar,where G is a linear grammar.De�nition 1.3 Let G = (VN ; VT ; S; P ) be a ontext-free grammar. We saythat:� A 2 VN is left-reursive, if there exists a derivation A +=)G A�; � 2 V +;� A 2 VN is right-reursive, if there exists a derivation A +=)G � A; where� 2 V +;� G is left (right) reursive grammar if there exists A 2 VN a left (right)reursive symbol.



Linear Bidiretional Parsing for a Sublass of Linear Languages 8It is known that a left-reursive grammar annot be LL(k) ([6℄, [5℄), for anyk � 0: However, there exist some proedures to transform left-reursion intoright-reursion. In omparison with LL(k) grammars, the LLin(m;n) gram-mars an be left-reursive, even right-reursive (like G4 from Example 1.1), butnot for the same nonterminal symbol.Theorem 1.4 If the redued linear grammar G ontains a left and right reur-sive nonterminal symbol A, then G annot be LLin(m;n); 8 m;n 2 N:Proof Let A be a left and right reursive symbol. BeauseG is linear grammar,this means that there exist the derivations:A +=)G Av0; A +=)G u0A; u0; v0 2 V +T :Without loss of generality, we suppose that the �rst distint produtions appliedin the above derivations are:A! B v1 and A! u1 CNow, beause G is a redued linear grammar, it follows that there exists aderivation: S �=)G uAvNow, we suppose that there existm;n 2 N suh as G is LLin(m;n). Continuingthe above derivation, we may write:S �=)G uAv =)G ux v1 v �=)G uAv0 v +=)G uu0Av0 v +=)G ::: +=)G u (u0)mA(v0)n vS �=)G uAv =)G uu1 y v �=)G uu0Av +=)G uu0Av0 v +=)G :: +=)G u(u0)m+1A(v0)n+1vBut (m) ((u0)mA (v0)n) =(m) �(u0)m+1 A (v0)n+1� and ((u0)mA (v0)n)(n) == �(u0)m+1 A (v0)n+1�(n): Using the fat that G is LLin(m;n), it follows thatA! B v1 oinides with A! u1C (a ontradition !).Therefore G annot be LLin(m;n); 8 m;n 2 N:The lass of LLin(m;n) grammars an generate some lassial non-determi-nisti languages ([4℄), suh as L = fan b2n ; an bn j n � 1g: For instane, G6from Example 1.1 an generate this language.Proposition 1.1 (The Pumping Lemma for Linear Languages, [8℄)For every linear language L � V �T , there exists a natural number N , depend-ing only on L, suh that if z 2 L with jzj > N then there exist u; v; w; x; y 2 V �Tfor whih the following onditions are ful�lled:(a) z = u v w x y;(b) jv xj > 0;



Linear Bidiretional Parsing for a Sublass of Linear Languages 9() ju v x yj � N ;(d) 8 i � 0 : u vi w xi y 2 L:Theorem 1.5 (losure properties) LLin(m;n) is not losed under:(i) union(ii) intersetion(iii) atenation(iv) homomorphismProof(i) LetG1 = (fSg; fa; b; g; S; fS! aS b j g) andG2 = (fSg; fa; b; dg; S; fS!aS b b j dg) be two LLin(1; 0) (or LLin(0; 1)) grammars. Obviously, wehave L(G1) = fak  bk j k � 1g and L(G2) = fak d b2k j k � 1g. Thelanguage L(G1) [ L(G2) is not a linear language (proof of Theorem 1.3);(ii) Consider G1 = (fS;Ag; fa; b; g; S; fS ! S  jA; A ! aA b j a bg) andG2 = (fS;Ag; fa; b; g; S; fS! aS jA; A! bA  j b g) be two LLin(0; 2)and LLin(2; 0) grammars, respetively. So L(G1) = fan bn m j m;n �1g and L(G2) = fam bn n j m;n � 1g. Then the intersetion of theselanguages L(G1) \ L(G2) = fan bn n j n � 1g is not a ontext freelanguage (nor linear, of ourse) ([2℄, [3℄, [6℄);(iii) Let G = (fSg; fa; bg; S; fS ! aS b j a bg) be a LLin(2; 0) (or LLin(0; 2))grammar. We obtain L(G) = fan bn j n � 1g. We shall prove that thelanguage L(G) � L(G) = fan bn am bm j m; n � 1g is not linear. DenotingL = L(G) � L(G), we suppose, by ontrary, that L is a linear language.Applying the pumping lemma for linear languages, we an hoose the wordz = aN bN aN bN whih belongs to L. Then u v 2 fag� and x y 2 fbg�beause of () ondition. This implies that there exist i1; i2; i3; i4 2 N;i2 + i3 � 1 (beause of the (b) ondition) suh that:u = ai1 ; v = ai2 ; w = aN�i1�i2 bN aN bN�i3�i4 ; x = bi3 ; y = bi4 :Using the ondition (d) and hoosing, for instane, i = 0; we obtain thatuw y 2 L, i.e. aN�i2 bN aN bN�i3 2 L: Sine i2 + i3 � 1; we get neitherN � i2 6= N , nor N � i3 6= N: Therefore aN�i2 bN aN bN�i3 annot belongto L:(iv) Let G = (fS;A;Bg; fa; b; ; d; e; fg; S; fS ! A jB; A ! aA b j ; B !eB f f j dg) be a LLin(1; 0) (or LLin(0; 1)) grammar. Obvious, the lan-guage generated by it is L(G) = fak  bk; dk e f2k j k � 1g. Now, weonsider the homomorphism de�ned by h(a) = a; h(b) = b, h() = ,h(d) = a, h(e) = d, h(f) = b. This implies that h(L(G)) = L, where Lis the language used in the proof of Theorem 1.3. Beause L does notbelongs to the lass of LLin(m;n) languages, our lass of languages is notlosed under homomorphism.
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2 A Bidiretional Parser for LLin(m;n) Gram-marsIn this setion, we shall de�ne some useful sets of pairs of words. We shall presenta haraterisation theorem for LLin(m;n) grammars and a bidiretional parserfor them.De�nition 2.1 Let G = (VN ; VT ; S; P ) be a linear grammar, � 2 V �; # a newterminal symbol and m;n 2 N+. We de�ne firstm lastn(�) as the union ofthe following sets of pairs of words orresponding to �; m; n suh as:� (u; v) if 9 � �=)G ux v; u; x; v 2 V �T ; juj = m; jvj = n; jux vj � maxfm;ng;� (#x v; v) if 9 � �=)G x v; x; v 2 V �T ; jx vj = k < m; k � n; jvj = n;� (u; u x#) if 9 � �=)G ux; u; x 2 V �T ; juxj = k < n; k � m; juj = m;� (#x; x#) if 9 � �=)G x; x 2 V �T ; jxj = k; k < m; k < n:Theorem 2.1 (haraterization of LLin(m;n) grammars)Let G = (VN ; VT ; S; P ) be a redued linear grammar. Then G is LLin(m;n)grammar i� the following ondition holds:(1) firstm lastn(�1)\firstm lastn(�2) = ;; 8A! �1; A! �2 2 P; �1 6= �2:Proof(=)) Let us suppose that G does not satisfy the ondition (1). This means thatthere exist two distint produtions A ! �1; A ! �2 suh that the followingrelation holds: firstm lastn(�1) \ firstm lastn(�2) 6= ;:Aording to the De�nition 2.1, there exist four situations (remind that # is anew terminal symbol):1) (u0; v0) 2 firstm lastn(�1)\firstm lastn(�2). Then there exist the deriva-tions (ju0j = m; jv0j = n):�1 �=)G u0 x v0; x 2 V �T ;�2 �=)G u0 y v0; y 2 V �T :Beause G is a redued grammar, it follows that A is an aesible nonter-minal, so we obtain the derivations:S �=)G uAv =)G u�1 v �=)G uu0 x v0 v



Linear Bidiretional Parsing for a Sublass of Linear Languages 11S �=)G uAv =)G u�2 v �=)G uu0 y v0 vAording to the De�nition 1.1, it follows that �1 = �2: Contradition !2) (#x v0; v0) 2 firstm lastn(�1)\firstm lastn(�2): Then aording to Def-inition 2.1, there exist the derivations (jx v0j = k < m; jv0j = n � k):�1 �=)G x v0; x 2 V �T ;�2 �=)G x v0:So, again we obtain the derivations:S �=)G uAv =)G u�1 v �=)G ux v0 vS �=)G uAv =)G u�2 v �=)G ux v0 vAording to the De�nition 1.1, it follows that �1 = �2: Contradition !The rest of ases an be solved in an similar way.((=) Let us suppose that G is not a LLin(m;n) grammar. Then there existtwo distint derivations:S �=)G uAv =)G u�1 v �=)G ux vS �=)G uAv =)G u�2 v �=)G u y vsuh that x(n) = y(n) and (m)x =(m) y: Then there exist u0; v0 2 V �T suh asju0j = m; jv0j = n and x = u0 z1 v0; y = u0 z2 v0: This implies that the pair(u0; v0) 2 firstm lastn(�1) \ firstm lastn(�2). But A ! �1 and A ! �2 aredistint produtions (i.e. �1 6= �2) in G, so we obtain a ontradition to thefat that G satis�es the ondition (1).Theorem 2.1 prove that the following problem is deidable:\Given a linear grammar G = (VN ; VT ; S; P ) and two integers m and n; onean deide if the grammar is LLin(m;n):"Next, we shall de�ne a devie similar somehow with a deterministi push-down \transduer". This will be alled the bidiretional parser (syntatianalyser) attahed to the LLin(m;n) grammar G. It sans an \input string",one or/and two strings at a time, from left to right or right to left. It an pushor pop strings in the double ended queue (deque) from both sides. In the out-put tape, it provides the syntati analysis. It returns with the value \ACC" or\ERR" depending on whether the input string is aepted or not.
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Figure 2. LLin(m,n) style bidiretional parser

Double endedqueue

Formally, we give the following de�nition:De�nition 2.2 Let G = (VN ; VT ; S; P ) be a LLin(m;n) grammar. We de-note by C � #V �T# � V � � f1; 2; :::; jP jg� the set of possible on�gura-tions, where # is a speial harater (a new terminal symbol). The bidi-retional parser (denoted by BPm;n(G)) is the pair (C0;`), where the setC0 = f(w; S; �) j w 2 V �T g � C is alled the set of initial on�gurations, and`� C � C is the transition binary relation (sometimes denoted `BPm;n(G))between on�gurations given by:10. Expand transition:(#u#; A; �) ` (#u#; �; �r) if r = A! � for whih the pair((m)u#;#u(n)) 2 firstm lastn(�)20. Redue transitions:a) (#v1 u#; v1A; �) ` (#u#; A; �); v1 2 V +Tb) (#u v2#; A v2; �) ` (#u#; A; �); v2 2 V +T) (#v1 u v2#; v1Av2; �) ` (#u#; A; �); v1; v2 2 V +T30. Aeptane transition:(##; �; �) ` ACC



Linear Bidiretional Parsing for a Sublass of Linear Languages 1340. Rejetion transition:(#u#; �; �) ` ERR if no transitions of type 10; 20; 30 an be applied.We denote by +̀ ( �̀) the transitive (reexive) losure of the above binaryrelation ` : Sometimes, for a given grammar G, we may denote these losuresby +̀BPm;n(G) ( �̀BPm;n(G) respetively).It is obvious that the bidiretional parser BPm;n(G) is deterministi, i.e.for an arbitrary on�guration, at most one on�guration may be reahed. Theonly plae at whih this not so obvious, is at the expand transition 10. But theondition ((m)(u#) ; (#u)(n)) 2 firstm lastn(�) ensures the uniqueness of theprodution A! � beause G is a LLin(m;n) grammar.Lemma 2.1 Let G be a LLin(m;n) grammar. Then, the following impliationsare ful�lled:(i) (#v1 u v2#; S; �) �̀BPm;n(G) (#u#; X; �0); implies S �0=)G v1X v2;(ii) (#w#; S; �) �̀BPm;n(G) (##; �; �); implies S �=)G w:Proof(i) We proeed by indution on the length of �0.Basis: j�0j = 0: Thus v1 = v2 = �; A = S; thus obviously S �=)G S:Indutive Step: j�0j > 0: Let us onsider �0 = �01 r; where r = B ! � isthe last applied prodution. Denoting v1 = v11 v12 and v2 = v21 v22 we obtain:(#v1 u v2#; S; �) = (#v11 v12 u v21 v22#; S; �) �̀ (#v12 u v21#; B; �01):From the indutive hypothesis, it follows that S �01=)G v11B v22: Then applying10; from De�nition 2.2, we obtain the on�guration (#v12 u v21#; �; �1 r), where((m)v12 u v21; v12 u v(n)21 ) 2 firstm lastn(�): The next transitions(#v12 u v21#; �; �01 r) �̀BPm;n(G) (#u#; X; �0)imply that BPm;n(G) made only redue transitions. So, � = v12X v21 (from 20a),b),), De�nition 2.2). Now, we may write the derivation:S �01=)G v11 B v22 r=)G v11 � v22 = v11 v12X v21 v22 = v1X v2(ii) We take in (i) u = �, X = �, v1 v2 = w, �0 = �:Lemma 2.2 Let G be a LLin(m;n) grammar. Then, the following impliationsare ful�lled:



Linear Bidiretional Parsing for a Sublass of Linear Languages 14(i) S �0=)G v1X v2 implies (#v1 u v2#; S; �) �̀BPm;n(G) (#u#; X; �0);(ii) S �=)G w implies (#w#; S; �) �̀BPm;n(G) (##; �; �);Proof(i) We proeed by indution on length of �0.Basis: j�0j = 0: Thus v1 = v2 = �; A = S; so the following transitions hold:(#u#; S; �) �̀BPm;n(G) (#u#; S; �):Indutive Step: j�0j > 0: Let us onsider �0 = �01 r, where r = B ! �is the last applied prodution whih form the sentential form v1X v2: So, thederivation may be written as:S �01=)G v11B v22 r=)G v11 v12X v21 v22 = v1X v2For �01 we apply the indutive hypothesis, so we obtain(#v11 v12 u v21 v22#; S; �) �̀BPm;n(G) (#v12 u v21#; B; �01):Now, we may ontinue with expand transition, and obtain the on�guration(#v12 u v21#; v12X v21; �01 r): Right now, we apply the redue transitions a),b),)and obtain the on�guration (#u#; X; �01 r) = (#u#; X; �0):(ii) We take in (i) u = �, X = �, v1 v2 = w, �0 = �:Theorem 2.2 (orretness and omplexity of BPm;n(G))Let G be a LLin(m;n) grammar. Then(#w#; S; �) �̀BPm;n(G) (##; �; �) `BPm;n(G) ACC i� S �=)G w:Obviously, (#w#; S; �) �̀BPm;n(G) ERR i� w =2 L(G): The number of transitionsof BPm;n(G) has O(jwj) time omplexity, where w is the input word.Proof Both equivalenes result diretly from Lemmas 2.1 (ii) and 2.2 (ii),respetively. The time omplexity results from the fat that BPm;n(G) is de�nedover a �nite struture (grammar G) and BPm;n(G) (and syntati analysis) isdeterministi (no baktrak step is needed).In the next setion, we shall refer to another pratial bidiretional parser,i.e. for LLin(1; 1) grammars (the sets firstm lastn an be omputed in poly-nomial time related to the dimension of the input grammar).



Linear Bidiretional Parsing for a Sublass of Linear Languages 153 Bidiretional Parsing for LLin(1; 1) GrammarsThe LLin(0; 0) grammars have the property that there exists no nonterminalsymbols whih may be the left side of a prodution. Obvious, for a reduedLLin(0; 0) grammar, its language is �nite, so there is no pratial interest.Also, we don't onsider LLin(1; 0) or LLin(0; 1) grammars beause they o-inide with LLin(1) grammars or reverse (mirror) LLin(1) grammars (Corollar1.1).We remind to De�nition 2.1 for m = n = 1:De�nition 3.1 Let G = (VN ; VT ; S; P ) be a linear grammar, � 2 V �: Thenfirst last(�) = f(a; b) j 9� �=)G a v b; v 2 V �T ; a; b 2 VT g [ f(�; �) j � �=)G �gObvious, Theorem 2.1 beomes:Theorem 3.1 G is LLin(1; 1) grammar i� first last(�1)\first last(�2) = ;;8 A! �1 2 P; 8 A! �2 2 P; �1 6= �2:The bidiretional parser BP1;1(G) (denoted simply by BP (G)) an also bereformulated (we present only the transition relation, # being a new nonterminalsymbol):10 Expand transition:(#u#; A; �) ` (#u#; �; � r) if r = A! � and the pair((1)u#;#u(1)) 2 first last(�)20. Redue transitions:a) (#v1 u#; v1A; �) ` (#u#; A; �); v1 2 V +Tb) (#u v2#; A v2; �) ` (#u#; A; �); v2 2 V +T) (#v1 u v2#; v1Av2; �) ` (#u#; A; �); v1; v2 2 V +T30. Aeptane transition:(##; �; �) ` ACC40. Rejetion transition:(#u#; �; �) ` ERR if no transitions of type 10; 20; 30 an be applied.BP (G) may be used in pratial ompiler appliations, beause for instanethe omputation of the sets first last(�) (� being right side part of a produ-tion) an be done in polynomial time omplexity related to the dimension ofinput linear grammar G:Example 3.1 Let us review the grammar G4 from Example 1.1.1. S ! aS



Linear Bidiretional Parsing for a Sublass of Linear Languages 162. S ! Ab3. A! Ab4. A! �We an easily ompute the sets:� first last(aS) = f(a; b)g;� first last(Ab) = f(b; b)g;� first last(�) = f(#;#)g;Aording to the Theorem 3.1, it follows that G4 is LLin(1; 1) grammar. Letus now onsider the word w = a a b b b: The following transitions of BP (G4) anbe: (#a a b b b#; S; �) ` (#a a b b b#; a S; [1℄) ` (#a b b b#; S; [1℄) `` (#a b b b#; a S; [1; 1℄) ` (#b b b#; S; [1; 1℄) ` (#b b b#; A b; [1; 1; 2℄) `` (#b b#; A; [1; 1; 2℄) ` (#b b#; A b; [1; 1; 2; 3℄) ` (#b#; A; [1; 1; 2; 3℄) `(#b#; A b; [1; 1; 2; 3; 3℄) ` (##; A; [1; 1; 2; 3; 3℄) ` (##; �; [1; 1; 2; 3; 3; 4℄) ` ACCSo, w is \aepted" by BP (G4), and then aording to Theorem 2.2, it followsthat w 2 L(G4):Next, we de�ne two supplementary funtions and two supplementary binaryrelations whih will be used for determining the sets first last(�); where � is aright side part of a prodution of G: These are first; last : VN ! P(VT )[f�gsuh that:� a 2 first(A) i� there exists the derivation A �=)G a�;� a 2 last(A) i� there exists the derivation A �=)G � a;� � 2 first(A) (or last(A)) i� there exists the derivation A �=)G �.and begin; end � V � VN given by:� X beginA i� there exists the prodution A ! � X v and � �=)G �, where� 2 VN [ f�g;� X endA i� there exists the prodution A ! uX � and � �=)G �, where� 2 VN [ f�g.The following lemma gives a proedure for obtaining the relations begin andend.Lemma 3.1



Linear Bidiretional Parsing for a Sublass of Linear Languages 171) If Y beginnX then there exists m; m � n suh that X m=)G Y �;2) If X n=)G Y � then there exists m; m � n suh that Y beginmX;3) a begin�A i� there exists a derivation A �=)G a�;4) If Y endnX then there exists m; m � n suh that X m=)G �Y ;5) If X n=)G �Y then there exists m; m � n suh that Y endmX;6) a end�A i� there exists a derivation A �=)G �a;Proof Obviously, by indution on m or n.Using Lemma 3.1, it is obvious that:� a 2 first(A) i� a begin�A;� a 2 last(A) i� a end�A:The omputation of first last is presented as a returned value of the follow-ing self-explanatory reursive funtion.Input: The linear grammar G = (VN ; VT ; S; P )Output: first last(�); � 2 V �:funtion first last(�);beginif (� = �) then first last(�) := f(#;#)g;if (� = a; a 2 VT ) then first last(�) := f(a; a)g;if (� = a � b; a; b 2 VT ) then first last(�) := f(a; b)g;if (� = Au b; A 2 VN ; u 2 V �T ; b 2 VT ) then beginfirst last(�) := f(a; b) j a 2 first(A)� f�gg;if (� 2 first(A)) then add to first last(�) the pair ( (1)u b; b);end ;if (� = a uA; a 2 VT ; u 2 V �T ; A 2 VN ) then beginfirst last(�) := f(a; b) j a 2 last(A) � f�gg;if (� 2 last(A)) then add to first last(�) the pair (a; a u(1));end ;if (� = A; A 2 VN ) then beginset hain(A) := fB j A �=)G B; B 2 VNg;set fst snd := ;;for (any A! � 2 P; B 2 set hain(A)) doif (� =2 VN ) then set fst snd := set fst snd [ first last(�);first last(�) := set fst sndend



Linear Bidiretional Parsing for a Sublass of Linear Languages 18end .The funtion first last needs polynomial time omplexity (related to thedimension of G) beause it desribes (in a reursive manner) the transitivelosure of the derivation relation from linear grammars.As we an see in the following example, first last(�) is properly inludedin first(�)� last(�):Example 3.2 Let G = (fS;Ag; fa; b; g; S; fS ! A; A ! aA b j bA a j g)be a linear grammar. Using, for instane, the funtion first last, we obtainfirst last(A) = f(a; b); (b; a); (; )g. On the other hand, first(A) = fa; b; gand last(A) = fa; b; g: It results that G is LLin(1; 0) (or LLin(0; 1)) grammar.4 ConlusionsAording to the results related to LLin(m;n) grammars, the following pitureis valid:

unambiguous grammars
LL(k) grammarslinear grammars

ontext-free grammars Figure 3
LLin(m,n) grammars

Without loss the generality, we allow three modi�ations of the bidiretionalparser for testing the power of the devie de�ned in De�nition 2.2:(i) we allow reading (and replaing) at the ends of the deque of two onse-utive symbols (instead of only one);(ii) we allow to interhange the ontents of that two ends of the deque;(iii) we shall remove the third omponent, i.e. the syntati analysis (it doesnot interfere in the deterministi transitions).



Linear Bidiretional Parsing for a Sublass of Linear Languages 19With suh modi�ations, we shall present an example of a bidiretionalparser whih an analyse the ontext sensitive language L = fan bn n j n � 1g.In fat, we shall simulate the monotone grammar given by the following pro-dutions:1. A! aAB 2. A! a b 3. B ! B 4. bB ! b bAs a initial on�guration, we take (#w#; A), where w 2 fa; b; g� is theinput word. Assuming that the notations w and  stand for words (of anylength) over fa; b; g, and fa; b; ; A;Bg respetively, the transitions will be thefollowing:1. (#a aw #; A ) ` (#a aw #; aAB  )2. (#aw #; a  ) ` (#w#; )3. (#aw#; a  B) ` (#w#;  B)4. (#a bw#; A ) ` (#a bw#; a b  )5. (#bw #; b  B) ` (#w #;  B)6. (#bw #;   B) ` (#bw #;   B )7. (#bw #;  B  ) ` (#bw #; B   )8. (#bw#; B ) ` (#bw#; b )9. (#bw #; b  ) ` (#w#; )10. (#b bw  #;    B B) ` (#b bw  #; B   B )11. (#b #;  B) ` (#b #; B )12. (##; �) ` ACC13. (�; �) ` ERR - in the other ases.Obviously, the above bidiretional parser is deterministi beause at eahstep at most one transition may be applied. For instane, we may say thatthe parser is of type (3; 3) beause at the transition 11, we need to read threesymbols from the left, and right, respetively.We onlude that the sublass of LLin(m;n) is more powerful than somedeterministi ontext-free languages, keeping the linear time omplexity of the



Linear Bidiretional Parsing for a Sublass of Linear Languages 20algorithm assoiated to the membership problem. In general, it does not man-tain the main losure properties. In addition, we an formulate some open-problems, for instane the losure under omplementation, intersetion withregular languages and inverse homomorphism.Referenes:1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Com-piling. Volume I: Parsing, Prentie Hall, 19722. Harrison, M. A.: Introdution to Formal Language Theory. Addison -Wesley Publishing Company, 19783. Hoproft, J.E., Ullman, J.D.: Introdution to Automata Theory, Lan-guages and Computation. Addison - Wesley Publishing Company, 19794. Knuth, D.E.: On the translation of languages from left to right. Infor-mation Control. 8: pp. 607-639 (1965)5. Knuth, D.E.: Top-down analysis. Ata Informatia. 1: pp: 79-110 (1971)6. Juan, T, Andrei, S�t.: Limbaje formale �si teoria automatelor. Culegerede probleme. Editura Universit�at�ii \Al. I. Cuza", Ia�si, 19977. Lewis, P.M., Stearns, R.: Syntax-direted transdution. Journal of theACM. 15: pp. 464-488 (1968)8. Salomaa, A.: Formal Languages. Aademi Press. New York, 1973


