Generic Interfaces to Remote Applications in Open Systems

M. Merz and W. Lamersdorf

Department of Computer Science, University of Hamburg, Vogt-Kaolln-Strafl3e 30,
D-2000 Hamburg 54, Germany; eMail: [merz|lamersd]@dbisl.informatik.uni-hamburg.de

Abstract

Futureindustrial productionand engineeringenvironmentswill profit substantiallyfrom
emergingopen distributed computer communication network environments.They will, in
principle,be ableto benefitfrom a high potentialof services availablein suchenvironments
to supportindividual client applicationsin practice however free andflexible client/ server
cooperationsare frequently hinderedby the great and confusingvariety of interfaces in-
volved in accessing various and heterogeneous network services.

In order to support open client/ server cooperationsin distributed systems, this
contribution proposesa unifying description mechanism for remote servicesin computer
networks. It describes an application oriented generic communication service, which
facilitatesclient/ servercooperationin opensystemsMostimportantbasisfor sucha service
is a uniform service specification mechanisnior openserverinterfacesCorrespondinglythe
paperfirst specifiesa specfic service interface description language (SIDL). It thenshows
how sucha serviceinterfacedescriptioncould also be usedfor automaticcreationof server-
specificlocal human user interfaces. In combinationa genericnetwork interface description
language (NIDL) specificdion, as proposedhere, supportsclient applicationsin open
systemsby providing a common mechanism to accessand utilize any sewice available
anywhere in the network.

Keyword Codes: C.2.4, H.4, H.5.0
Keywords: Distributed Systems, Communications Applications, Information Interfaces and
Presentation, General

1. INTRODUCTION

Sincethe integrationof formerly - logically andgeographically separate@ndheteroge-
neoussoftwaresystemshasbecomeanissuefor researcrandindustrialimplementationnew
conceptdo supportthis kind of ‘interoperability’havegraduallyemergedprogrammingan-
guages have been extended to cover communication requirdrmeeméerseparatednodules
[1]; advancedlatabaseystemsstartedto supportdistribution schematdor the allocationof

1Appearedin: Proc. IFIP Working Conferenceon Interfacesin Industrial Systemsfor Productionand
Engineering, North-Holland, 1993, pp 267-281

distributedobjects[2]; andspecificapplicationorientedcommunicatiorstandard$iavebeen
developed for, e.g., accessing remote database semiopgnnetworkenvironmentg3]. As
aresult,the systemdesignetin the contextof sucha 'distributedapplication'scenarias now
confrontedwith a large numberof different kinds of interfacesto various servicesoffered
anywheran the network.The variety of suchinterfacescanbe describedbetweerthe human
user,on the one hand, and a (potential) multitude of heteogeneousand different remote
applicationsin the opensystemsenvironment,on the other hand. In sucha scenario,the
potential cooperationof different usersand system componentis, in practice however,
hinderedby the multitude of different serversand interfacesas generally offered in the
heterogeneous open system network environment.

Consider, as a simple example, an access facilitynmtedatabaseservicesn opensyst-
ems, which involves the following (different) interfaces(seeFigure 1): the userinterface
betweenthe humanuserand a (local) front-endapplicationsoftware,the interfacebetween
this softwareand appropriatenetworkcommunicatiorservicesjts counterparat the remote
site and the interface between the remote application and its local resources. Bbtieasdn
interfacesthereare severalde-jureand de-factostandardsavailable,but in mostcaseghese
stardardshave beerspecifiedfor the requirement®f somespecializedapplicationconexts
(e.g.electronicmail or documentinterchangestandardg4]) or they concentrateon system-
orientedservices,like communicationstandardsadheringto the ISO referencemodel for
OpenSysteminterconnectionOSI). Only recently,the interdependencef severalof such
interfaces between the human userpnahand,andremoteapplicationan opensystemspn
the other hand,hasbecomean issuefor internationalstandardizationn the contextof the
fundamentalwork on a generalframeworkfor 'OpenDistributed Processing(ODP) of ISO
and CCITT [5].

i <> <

User Client Communication Services Server Database
Interface Application Application

Y

Y

A
A
Y

Figure 1: Interfaces between the human user and a remote server

The situationbecomesevenmore complexif we considerfuture development®f high-
speedcommunicationsystems:in future distributedopensystems,interconnectedy high-
speedhetworks,a vastnumberof serviceswill be easilyaccessiblat a high transferrateand
a high level of distributiontransparency6]. In suchenvironmentsyemoteapplicationswill
play the role of dedicatedservers,performing specializedtask, rather than monolithic
softwaresystemdike today'shostapplications.Here,remoteserversare accessibleéhrough
specificserverinterfacesn a similar way to both local and externalcommunicationpartners
[7].

Especiallyin a scenarioas sketchedabove,it would creategreat confusionfor human
usersif the humaninterfaceto sucha fine-grained"marketof services"was reflectedby a

similarly fine-grainedstructureof different(!) serverinterfacesTherefore accesgo various
servicesin opensystemscould be greatly supportedandimprovedif all accessibleservices
could be described in terms of a unified, standardizedand commonly known formal

notation.Sucha unifying formalismfor network (service)interfacesof any kind is calleda

'‘Network Interface Definition Language'(NIDL) and servesto provide a corresponding
servicedescriptionfor eachserverthatis directly or indirectly accessibldor any (remote)
client node [8].

This paperfocuseson thejoint andunified designanddescriptionof bothcommunication
and userinterfacesin a heterogeneouspen systemscenario.The goal aimedat hereis a
generic system software component, which dynamically generates the required user interfaces
from any specific 'Service Interfa@scription’(SID) expressedh termsof the standardized
NIDL (seeFigure 2). In sucha scenario,the SID could serve both for determiningthe
network interface of a remote server and for its (e.g. graphical) appearéneprasentation
level of a local human user interface [9].

%(_)

Figure 2: Integration of interfaces and components in the client/server-model

A
Y

Generic Interface to Remote Applications Server Database
Application

The paper is organized as follows: section 2 gives a survey about potential prahlems
applying current client/serverinterfacing techniquesin the context of an open systems
backgroundBasedon thesefacts,requirementgor a successfultlient/serverinteractionare
elaboratedn Section3. Afterwards,a client/serveiinteractionmodelis presentedind,based
on this model,a prototypeimplementationjncluding an introductionto the serviceinterface
description language SIDL (Section 4). Some conclusions are finally presented in Section 5.

2. INTERFACING PROBLEMSIN OPEN SYSTEMS

As a motivating example, a car reservation service is consitteteaicar rentalcompany
offeresto its clientsbasedon a distributedapplicationservice.Severalquestionsarisewithin
this context:how are dataentry forms to be presentedat a remoteclient's site? How is the
serviceaccesdo be supportedfor a client? What doesthe client's softwareneedto know
aboutthe serviceconsidered’And how canthe validity of the datatransferredoe assured?
Finally, how doesthe client software adjustto a possiblereleasechangeof the server
interface?

As afirst step,the following sectionsgive a shortclassificationof theseinterfacingpro-
blemsat client/server-systemisi opendistributedenvironmentsThis classificationfocusses
on problems arising specifically in an open systems context.

2.1 Heterogeneity Problems

Thereareseveralevelsof heterogeneityn opendistributedprocessinghatemergefrom
the integrationof different multi-vendor hardwareand softwarecomponentsAt a distinct
level, heterogeneityis even demandedas the specializationof software systemsrequires
"non-stamlard” implementations.In general, howeverheterogeneityhinders the desired
cooperative iteraction of distinct distributed applications.

At the lowest level of heterogeneitydifferent hardwareimplementationsand, thus,
varying physicalrepresentationsf datavaluesat eachrespectivelocal systemhaveto be
integrated by corresponding mapping mechanisms between heterogeneoussystem
componentsln the contextof the ISO OSlreferencenodelfor opensystemcommunication,
this transformatiortaskis performedby the presentatiorservicesat level 6 of the ISO OSI
reference model [10].

At a higherlevel of abstractionheterogeneityproblemsaddresdifferencesin services
andresourcemanagemenfunctions:communicatingapplicationdfirst haveto agreeabouta
jointly supportedprotocol aswell as aboutcertaincommunicationquality attributes.Local
resourceslike file systemsgdatabaseer operationsystemservicescannot be accessedrom
remote systemsif different and inconsistentinterfacesare supplied. At last, applications
semanticsnay vary themselveseventhoughtheir syntaxand semanticanay seemvirtually
identical at the iterface level

In general, the most promising approachto tackle heterogeneityproblemsis to
standardizenterfacesor applicationsasa whole. A standardizatioprocedurehowever,is a
time consuming processand hindersanimmediate"publication” of new servicesTherefore,
genericapplicationorientedcommunicationstandardsmay be well suitedfor defining the
basic communicationprotocolsnecessaryfor eachclassof similar applications(like, e.g.,
Remote Database Access, RDA)[11].

In our caseof integratingcommunicationand userinterfacedescriptiontechniquesthe
stardardizationmay also coverthe syntaxof a servicedescriptionthatis thentransmittedas
an individual 'protocol dataunit' (i.e. standardizednessagepver the network. Thus, each
individual serveris ableto exportsucha descriptionof its servicesprovidedto any of its
potential clents in a unified way.

2.2 Service Access Problems

The nextimportantquestionto be addressedn sucha scenariois, for example,how to
initiate an accesto a remote application before actually interact with it?

In the contextof a Local AreaNetwork (LAN), e.g.,local ‘contextserversmay be acces-
siblevia a dedicatednameserver'.Using sucha server,a client may senda servicelD to the
nameserverandthenreceiveall (or some,the 'bestpossible’etc.) information necessaryo
perform a remote serviceinvocation. Here, the name server'stask is to check whethera
serviceis registeredunderthe givenID by, e.g.,looking up a local table.In this simplecase,
only required andregisteredservicelDs haveto be matched sincedeveloperf client and
server appications took specific care for theselDs to conform to each other. In more
complex scenariosthe match betweenclient requirementsand server potentialscould be
providedby a specificdistributedsystemservice(a so called'trader'or 'broker'component)
basedfor example,upona more extensiveformal specificationof both requestorandserver
functionality [12].

In openserviceenvironmentsat a global scale,an ID-basedserviceselectionis possible
but notsatisfactoryfor client serviceusers:Ds haveto be centrallyreservedor eachservice

offered, and IDs have to be known in advanceby clients for all accessibleserversthat
provide potentially useful functionsfor clientsin additionto the specific serverinterfaces.
This situation could be greatly improvedif servicescould be describedand identified by
potentialclients semantically, i.e. not only by a more or lesscharacteristicservicenameor
ID, but in terms of a certain specificationof their semanticfunctionality and respective
properties!f sucha servicedescriptionis available the serviceselection mechanisiwhich
is a partof the'trader'function- seebelow)for the client would not be restrictedanymoreto
using IDs as the onlgttributefor specifyingandidentifying servicesbut couldbe basedon a
limited matchof the attribute semantics of both the client requestand the respectiveserver
function [13]. However, even this simple task of attribute based matching of client requests to
registeredservicesrequiresadditional supportby the new distributed service component
which supportsmatchingclient requestto the 'right' serverfunctionsavailableanywherein
the network. In advanceddistributedopen systemscenariossucha components called a
'‘trader' [14].

2.3 Conformance Problems

In heterogeneoudistributedsystemscglient calls are usuallytransmittedto remoteserver
functions via an abstractcommunicationmechanism:the Remote Procedure Call (RPC)
componen{15]. The RPC communicatiormechanismaimsat hiding nearly all distribution
and communication problems to RPC users - even in certain (e.g. message transmission) error
situations For alocal systemcomponentwhich usesRPC- for examplea client calling are-
mote server- all serverfunctionsarelocally representedby a so called'stub'function. This
stubcomponentwhich is a partof any distributedRPC basedcommunicatiorfunction, then
doesall necessaryransformationfrom local to communicationcontexts(resp. vice versa)
and cares for message transmission and reception.

Client Server @ Parameter conversion to transfer formar
Appl. Code Appl. Code @ Parameter conversion to server format
%\ A @ Local processing on server site
Q Stub @ 2) Stub @) @ Result conversion to transfer format
NP I I
w

| Transport Service a @ Result conversion to client format

Figure 3: Remote procedure calling phases

In advanceddistributed systemsbased on RPC, the necessarylocal stub can be
automatically generated, basedon a respectivelocal and remoteinterface specification. In
addition,whenusingsuch'stubgeneratorso automaticallycreateclient andserverinterface
code,clientandserverparametetypeswill implicitly matchsincethey arederivedfrom the
same interface specification.

In opensystemsenvironmentshowever,the situationis somewhatmore difficult: deve-
lopersof client and serversapplicationsare,in general remoteand unknownto eachother;
clientsarenot supposedo supplyspecificcompilersfor client'sinterfacestubs.Further,they

can not rely on an interfacedescriptionas imported from a remote serversite since data
types,as defined at the servernode, may not conformto the server'sactualinterfacedata
types - or the exporting component may be faulty or even malicious.

In orderto automaticallysupportthe developmenbf interfacesbetweenboth client and
server componentsn opensystemsat leasttwo requirementdiaveto be fulfilled: first, the
protocoldataunit (i.e. the 'message'jhat carriesthe requesthasto containtype information
aboutthe parametewaluesit containsand,seconda servicedescriptionhasto be imported
by the client from the serverin orderto (type) checkthe conformanceof the actualrequest
paraméersandtypeswith thoseof the serverasspecifiedin its servicedescription.To avoid
using uncompiledsourcecode stubs,the servicedescriptionnotation should be interpreted
directly by a generic client stub.

2.4 Standardization Problems

As a consequenc®f what was addressedn the precedingparagraphsan extended,
formdized, and unified - i.e. standardized - service interface description technique is a
necessaryrerequisitfor any effort - humanor systemsupported to matchclient requests
and server offerings in an open systemsscenario.Such a standardservice description
mechanismcould then becomea basisfor a more elaboratetrader service componentthat
supportsclient and servermatchesin open systemenvironmentswhere client and server
functions are not only provided on distinct nodesof the network, but also independently
developed and, in many cases, unrelated and unknown to each other.

Theissuein this caseis to committo a reasonablescopeof standardizatioraspectsare
only syntacticalaspectsto be defined as it is the casewith ASN.1 [10] or are service
primitives to be coveredas well? At what extentis the interdependencéetweenuser
interface elements,data types and service primitives a standardizatiormatter: a standard
could prescribetypes and their appearancat the userinterfacelevel or it could be more
appropriate to design a generic service with the option for application specific extensions.

In the following sections we concentrate oneagcutable typed protocol description.

3. ELEMENTS OF AN INTERFACE DESCRIPTION LANGUAGE FOR OPEN
SYSTEM SERVICES

As statedabove,RPC providesan appropriatecooperatiorparadigmand communication
mechanisnfor client/ serverapplicationsin distributedenvironmentsFor opennetworking
systemat a global scale,however,an additionalimportantquestionis to be raised:how can
an RPCinterfacedescription(as known, e.g., from Sun RPC) be conceptuallyextendedto
satisfy at least the following problems:

» First, an abstractionayer hasto be createdto coverthoseheterogeneityproblems,which

arise from any mismatch of the involved interfaces as shown in Figure 1.

» Second, means to express the functionality of a server to both, human and sdiéntse
are to be supplied to a common trading service.

» Third, since clients and serversdo not provide implicit knowledgeabout each other's
interfaces, it has to be explicified dynamically to prevent mismatching interaction.

» Finally, a sufficient level of generality is required if the previous aspects are cdyeaed
integrating standard.

Applied to the car rental example,a serviceinterfacedescriptionnotationshoulddefine
all necessaryelementsthat enablethe car booking task to human clients: different user
interfacesmight be involved, invalid datavaluesandtypesareto be rejected.The usermay
first entera specificationform of the requiredcar and thereafteracknowledgea final order
form. Therefore, several structural and behavioral constraints haveekpliEatedwithin the
service description.

Consequently, we have identified the following elements of an extended intdefsog-
tion:

3.1 Typeand Procedure Description

The necessaryinformation about service functionality and interface could, in a RPC
scenaio, be provided basedon a unified and standardizedservice interface description
languagg(SIDL) for the remoteprocedurecall interfacesof any remoteserviceavailableto
any client in the network.

Automatic stub generations well applicablein local areanetwork environmentswhere
both client and server code is written and used by a limited group of closely related
developerg16]. In opensystemenvironmentshowever,a useris not expectedo be ableto
compileandlink clientinterfacecode.Undersuchconditions,a genericclient interfacewith
an interpreting stub would be more appropriate But having only a generic communication
interface, the clientapplicationcodestill remainsserverspecific.By replacingthis codewith
a generic user interface, the client applicationasa whole is able to adapt dynamically (i.e.
‘automatically’) to any interface as required by a server. Thereforfe]ltwing aspecthave
to be formalized as well in order to be interpretable by generic client applications:

3.2 Export Description

A server'slocationis, in general,not known to a client in the opennetwork. If a user
searchedor a serviceto utilize in sucha scenarioa communicationconnectioncan not be
established between client and server unldsasacquireda matchingservicedescriptionIn
advancedlistributedapplicationenvironmentsthis task of selectingan appropriateservice
and providing the communicationlink to it is supportedby a trader componentor service.
The trader'staskis to registerservicedescriptionswhich are to be receivedfrom servers
from anywherein the network, andthento facilitate a client's searchfor a specific service
accordingto its request. In anattribute list basedservicedescriptiontechniqueas proposed
here,the serverprovidestwo alternateservicedescriptiongechniquesthe export description
andnatural language tags. Correspondinglya trader offerswo alternateserviceacquisition
techngues in our model:
1. Atrading mechanism, based attribute lists (theexport description) [17].
2. An interactivebrowsing mechanisnthroughregisteredservicesby the userbasedon

natural language tags.

To supportthe task of serviceselection,the serviceinterfacedescriptionas proposedn
this paperis extendedoy an export description, which characterizeghe interfaceof a server
as a whole on the basis of a server specific (formalized and standastiznédje list.

3.3 User Interface Description

In our serviceinterface descriptiontechnique,the interface descriptionitems (such as
type, procedure, state and export description) are extendethbgl anda comment attribute
for each service description. These extensionsmay be usedto supply natural language

annotationsof the item they are boundto. They serve as an additional redundant,user-
orientedtag to supportan interactiveanalysisof servicecharacteristicswhich are available
and potentially useful for specific client request in the network.

Sincea genericuserinterfaceis driven by the serviceinterfacedescription type-specific
editors for datavaluescanhelp to preventpotentialtype mismatchesEachtype that canbe
defined within the service desctipn is automatically mapped intosaecificeditor structure.
Further constraints like subrangetypesfor integers,should be possibleto define. These
constaintsshouldbe reflectedby specificuserinterfaceobjects,which preventinput of not
type conforming data values. Thus, the generic client application is able to prevent
transmission of faulty parameters to remote servers.

In order to reflect, e.g., a subrangetype, severaluser interface objectsare selectable;
therdore, the servicedescripton languageis additionally extendedby various presentation
hints for the respectivedata types. Thesedescriptionscan then be usedto automatically
createa (graphical)userinterfacerepresentatiorof the respectiveremoteserviceinterface
valueson alocal I/O device- independenbf the serverandits function accesseth the open
network envionment.

3.4 Statedescription

In general,serverscan be classified as stateless and statefull servers.Servicesof a
statelessservercan be invoked in any order, while in the caseof statefull serversonly a
subsetof all possibleinvocation sequencess allowed. A specificationof this subsetof
allowed statetranstions is part of the protocol descriptionof that respectiveserver.If a
formal service description containsinformation about those 'legal' server states,remote
clientscould also acquirethat descriptionandrestrictclient behaviourto only thatwhich is
allowed at the server interface.

Consequentlythe lastpartof our serviceinterfacedescriptionis a formal descriptionof a
state transition automaton which specifieslegal serverstatesand transitionsas initiated by
sewrer functions and servicerequestsBy defining communicationstatesas a part of the
servicedescriptioninterpretedat run time, they arenot "hard wired" within client andserver
instances. Therefore, the state description serves as an application protocol specification.

3.5 Implementation Architecture Overview

In the following, the generalsystemarchitectureof a prototype system environment is
presented, which implementsa smallexamplethe basiccomponent®f a distributedclient/
serverenvironmenwith formally anduniquelydefinedinterfacesaspresentedbove.A first
prototype of the respectivanain systemcomponenthiasbeenimplementedn the contextof
a locally distributed heterogeneous open system network environment.

The correspondingystemmodelinvolvesfour kinds of componentsclient, client agent
(CAG), server agent (SAG) arserver.Clientsandserversconsistof applicationcodeandan
interfaceto their respectivdocal agents.The interactionbetweenclientsand serverscan be
dividedinto 5 phasesstart-upof the componentsbinding betweerclient and server,service
invocation,unbinding,andshut-downof the componentsThe processof binding impliesthe
seletion of a serveraswell asthe import of the server'sservicedescription.As shownin
Figure 4, at the beginningof a binding the servicedescriptionis storedat the server'ssite
after being corvertedfrom an externalrepresentationThe next stepis the transferof the
service description to both agents,where it is stored persistently. Only the internal

representatiorof a service descrigion needsto be standardizedsince it is interchanged
between heterogeneous components.

During a service invocation RPC parametersre transferredvia both agentsin orderto
perform the necessargonformancechecks.If thereis a mismatchbetweenspecifiedtypes
andthe parametetypestransferredjt is discoveredyy the agentlocal to the senderandan
error code is returned.

Insteadof involving a specificclient application,parameteraluesare mappedirectly to
the userinterfacelevel. Therefore the genericuserinterfacesupportsfunctionsfor the user
to selectan appropriateserver,to examinethe serviceprocedure®offeredby this serverand,
finally, to invoke selectedoroceduresThus,the communication-oriente@rocessof binding
between client and server is reflected at the user level by this service selection process.

The actualserviceinvocationrequiresthe userto supplythe RPCwith parametewalues.
Therefore the genericuserinterfacegenerates typedform for parameteentry (Figure 8).
The required type descriptionrnstrievedfrom thelocal CAG. Returnvaluesarepresentedn
the same way.

Client Client Agent Server Agent Server

R ”ﬁﬁgﬂ

(SIDL In’rerpre’re)

Conformance Check

- - d

E Textual Representation of SID ﬁg\g Internal, standardized Representatior
Figure 4: Transfer of service description from server to other components involved

By involving this generic style of user interfaceto remote services,a conformance
betweenthe client and server interfacesis given implicitly. The possibility of non-
conformances, however,left at the semanticlevel of an application.The effort of client
developements, therdore, reducedto only one implementionper hardwareand software
platform.

The prototype, implementedaccordingto the model describedabove, supportsthe
integraion of userinterfaceand communicationserviceaspectsDevelopinga new server
application requires solely to code service proceduresupon the server communication
interfaceand to describetheseprocecedureby meansof a SIDL servicedescription:the
formal parts as type, procedure, state and export descrgtthoptionally,theinformal part
of the user interface description as natural language tags.

The prototypeimplementatiorwasdevelopedn the basisof the SUN RPClibrary using
XDR (eXternalDataRepresentationL6] aspresentatiorservice.The technicalenvironment
corsistsof IBM RS/6000and Sun SPARC Stationsrunning AIX and SunOSas operating
systems.In animplementationdesignedfor heterogeneouand opensystemscenariosthe

allocationof the involved client andservercomponentso hardwaresystemss not restricted
to the example configuration as shown in Figure 5.

—p SErvice Acquisition Phase
—> Service invocation Phase Trader
SunSparc /

e \ IBM RS6000
Client bound to Trade
Client Client Agent ServerA ent Server]
; gent | g] (

- Client 1
SunSparc / Client bound oServ ' SunSparc / SunSparc /

IBM RS6000 IBM RS6000 IBM RS6000

Sun Sparc

Figure 5: Prototype implementation

4. A SERVICE INTERFACE DESCRIPTION LANGUAGE

This section presents some technical details of the Service Interface Destapiiuage
(SIDL) asproposedn this paper.As a consequencef the servicedescriptionelementsas
presented above, a SIDL service interface description contains four main components:

. Thetype description, defining at least one type for RPC parameters to be transferred,
. the procedure description, which describes remote services as a procedural interface,

. an optionaktate description in case of statefull servers, and

. an export description, which classifiesthe serviceexportedon basisof attributelists.

The remaining user interface description is syntactically integrated into these components.

TYPE SelectCarT RECORD{ ... };
TYPE SCResultT ...;
TYPE BookCarT ...;

SelectCarT SCResultT
SelectCar SERVICE SelectCar {

REQUEST SelectCarT
RESULT SCReturnT,
i S2:Selected
INIT: SelectCar -> S2
BookCar, Abort S2: SelectCar -> S2;
S2: BookCar -> INIT;
LI $2: Abort -> INIT;

L
EXPORT{ ... };

)

STATES {

Figure 6: A service interface and the description in SDL notation

4.1 Data Type Declarations

Any remote procedurecall may require structuredparameteror return valuesto be
transmited to and from client and serverinterfaces.Therefore,an orthogonaland complete
type systemis necessaryo describethesetypesuniquely.In distributedsystemspointeror
referencetypesare not allowed sincetheir valuesare invalid outsideof their local context.
However, transfomation functions have to be suppliedto transform betweentree or list
structuresas a local representation and unique bit sequencesas a general transfer
representation.

Accordingly, the SIDL type system contains the following types:

Basic types:

| NTEGER, DATE, CARDI NAL, FLOAT, CHAR, STRI NG and TEXT
Structured types:

RECORD { ... }, CHOCE { ... } and SEQUENCE {...}
Opaquetype:

ANY

The TEXT typerefersto atextfile onthelocal workstation,which canbe embeddednto
a RPCparameterCHOICE specifiesthe variantpart of a RECORDdiscriminatedby a type
tag. A SEQUENCEtype denotesa repetitionof identical subtypes.The opaquetype ANY
allows dynamic types, which are dynamically receivedat runtime but not checkedfor
conformance, since their actual type can not be anticipated at binding time.

According to the SIDL syntax definition, a type declaration lsaaxtendedptionally by
a list of attribute/value pairs. Thesemay concernsubrangeestrictionsof a type or hints for
the user interface representation. The following parameter type

TYPE Sel ect Car T RECORD ({
STRI NG, LABEL "Booki ng Date";
| NTEGER, LABEL "M | eage", RANGE TINY 50 10000;
| NTEGER, LABEL "# Days", RANGE TINY 1 100;
| NTEGER, LABEL "Model", COWM "For a broader range
of nodels consult our
service at nmin branch",
RANGE RADI O 3 "BMW 323" "VW Gol f" "Fiat UNO';
STRI NG, LABEL "Custoner Name";
STRING, LABEL "First Name";
STRI NG, LABEL "Street";
STRING LABEL "Zip Code";
STRING LABEL "City";
CHO CE {
| NTEGER LABEL "Visa";
| NTEGER LABEL " Master";
| NTEGER LABEL " Anmex";
| NTEGER LABEL "I nvoice";
} LABEL "Paynent";

definesa recordtype that containsnestedstructuredand basictypes. Someintegersare
constrainttypesrestrictedto a subrangeof, e.g.,100in the caseof the "# Days"field. Thus,
rangeconstraintanbe consideredy a genericuserinterfacein orderto rejectinput of data
valuesthat do not satisfy the type constraints.Extensionlist attributesare a subjectto
standardiationin orderto be interpretedcorrectly at heterogeneousites.For the automatic
generationof user interfaces, however, they are treated as hints, since they may not
necessarily be considered by the generator.

4.2 Service Procedure Interface Description

Serviceproceduresmay differ in parameteitype or in call semantics.To define these
proceduresthey are suppliedwith an attribute list that containsat least the mandatory
attributesREQUEST and RESULT, which refer to SIDL data types. Further attributes
controlling the remote procedure call semantics can be supplied optionally.

The following exampleshows how natural languageextensionsare embeddednto a
proceduredescription.The standardizedeyword COMM (for ‘comment’)is followed by an
annotatiorthat containshints for the humanuseron the intendedproceduresemanticsThis
informationshouldbe accessablér a humanuserwhile gatheringfor a suitableserviceat a
generic trader function.

PROCEDURE Sel ect Car {
REQUEST Sel ect Car;
RESULT Resul t Type;
TI MEQUT 120, COWM "Check availability takes tine";
/* nmore optional attributes */
}, COW "Clains reservation,
comm tted by Comm t Booki ng";

The interactivetradingmechanisnrequiresnaturallanguageannotationsas given by the
COMM extensionpresentedabove.A serverdeveloperis encouragedo use annotations
within the servicedescriptionas well as a client'suseris encouragedo browsethrougha
traderdirectorywhensearchingor appropriateservicesin the network.Finally, the generic
userinterfaceshouldprovidethe possibility to retrievethis additionalinformation aboutthe
service procedures the user is currently working with.

4.3 State Description

As mentioned above, stateless servers can performe client requests at the senamsite in
order. Statefulservershowever,requirea client to issueservercalls in an distinct order.In
the carrentalexample this would meanthat a reservationcan only be committedby a user
whenpreceededby a car model selection.Suchrestrictionson how to usea specific server
are,in generalcommunicatiorspecificationspart of the protocol or state descriptionof the
respectiveserver'sbehaviour.Usually, state-transitiordiagramsresp.finite statemachines,
areusedto modeltherangeof valid sequencesf potentialservicecalls. Sincestatesasthey
appearat the RPC interface level, are specific for the server application, a individual
application protocol specificationhas also to be suppliedfor eachservice as part of the
service interface description (see Figure 7).

During the client/ serverinteraction,the serverstateis tracedby the CAG and SAG in
orderto provide a stateconformancecheckfor further RPCs.Statespecificationsamay also
containan extensiorlist with annotationgor eachtransition,resp.for the statedescriptionas
a whole.

-~) .
D Communication States

Not X
[Bound) (Bound C ”\“T)Z) |:| Application States

Figure 7: Server states and their definition in the state description

4.4 Export Interface Description

The exportnterfacespecificationis anoptionalpartof a serviceinterfacedescriptionand
providesan attribute list which characterizeghe serviceas a whole. In contrastto, e.g.,
extersion list keywords,exportdefinition attributesare not standardizeavithin the scopeof
SIDL; they arecurrentlyrestrictedto providing an option for additionalinformal and server
specific servicedescriptions(which, of course,could lateronbe standardizeds well). For
example, the following export definition describes a car rental service:

EXPORT {
SERVI CE_CLASS CAR_RENTAL;
SERVI CE_NAME "Rent ACar " ;
SERVI CE_FEE_CATEGORY PER_| NVOCATI ON;
SERVI CE_FEE_CURRENCY USD;
SERVI CE_FEE_CHARGE 0.1;

b

45 User Interface Description

The user interface specificationof a remote service in open systemsprovides some
additional hints for a client, which may use it for an automatic (graphical or window)
presentation of the typed data values. Such hints have to kisnatlevel of abstractionn
orderto allow a wide rangeof potentialwindow managers$o supportanimplementatiorof a
generic user intéace on top. Type-specific editors @ichinterfacesnayvary in their visual
appearances.g.the type 'TI NY integer'may be graphicallyrepresente@sa slider or asan
entryfield. Figure8 givesan exampleon how the userinterfacespecificationcould be used
for automatically geneating a query form from the respectiveSIDL service interface
description.

As an example,the upperright window of Figure 8 showsa service descriptionfile,
wherethe type Sel Car T is definedand usedas parametettype for the Sel Car service
procedure On the left side the genericclient applicationis shownafter binding to the car
rental service,which suppliesthis procedureThe form windowsin the left part of Figure8
representhe parametewvaluefor the procedurenvocation.The actualparametetransferis
effected by pressing the "Write TDO" button: a Tagged Data OQj&xD) is generatedrom
the current data value and sent to theeseiThe transfer syntaof this dataobjectis checked
for conformance by the CAG, resp. SAG component.

(See appendix)

Figure 8: Prototype application

5. CONCLUDING REMARKS

This contributionaimedat improvedsystemsupportfor the problemof matchingspecific
application programclient requests with arbitrary but appropriategeneric remote server
interface functions as provided at dedicated server nodes in modern distributed and
heterogeneousomputernetwork environments Such open systemsenvironmentgypically
containa multitude of heterogeneouand autonomoustlient and servercomponentswhich
occasionally coopate in performing specific distributed application tasks.

In orderto supportapplicationdevelopmentfor open client/ serverenvironmentsthe
paperaddresseshe importantproblemof appropriatelydescribingthe multitude of various
and different (userand server)interfaces in a uniform, standardizecaind machine-readable
way. Sucha descriptionrepresents basicprerequisitefor systematiccomputersupportfor
distributed client/ server applications. This cooperationis, in practice however, often
hinderedby the lack of adejuate(formal) interfacedescriptionmechanismsTherefore,the
paper proposesa concept,describesa languageand shortly mentioneda corresponding
prototype implementation for a unifyimgtwork/ service interface description technique.

In result, the proposedservice interface description language (SIDL) helpsto reduce
both, complexity, requiredto accessheterogeneouservicesin open systems,as well as
implementation effort, requiredfor realizing open distributed applicationsconsiderablyby
providing the necessargystemsupportfor uniquely specifyingall involved userclient and
server communcation interfaces. Finally, we have demonstratedhow such interface
specificationscanalsobe usedfor the automatic creationof a local humanuserinterfaceto
any remote server with a corresponding formal service description, as proposed in this paper.

Futurework in this areaconcentratesg.g.,on a relaxationof the interactionrestrictions
betweenuser oriented and communicationoriented componentsFor example,the human
user interface should be freed from acting as a visual parameterentry stub for RPC
invocationwhile keepingthe conceptof generalityvia loadedservicedescriptionat binding
time. Therefore,a deeperexaminationof correspondindJser Interface Management System
(UIMS) technologiesand their relationshipto respectivecommunicationoriented services
seemsadvisable, especiallyfor future large-scaledistributedinformation servicesin open
systems.

6. REFERENCES

[1] W. Lamersdorf,et. al.: DatabasdProgrammingfor Distributed Office Systems|EEE
Office Automation Symposium, Los Alamitos, 1987

[2] M. Oeszu,P. Valduriez: Principalsof Distributed DatabaseSystems,PrenticeHall,
New Jersey, 1991

[3] ISO/IEC JTC 1/ SC21/ WG 3: Information ProcessingSystems- Open System
InterconnectionOSI): RemoteDatabaseAccess(RDA), InternationalStandard9579,
1993

[4] J. Rosenberget al.: Multi-media DocumentTranslation- ODA and the EXPRESS
Project, New York, 1991

[5] P. Linington: Introductionto the ODP Basic ReferenceModel, in: InternationallFIP
Workshop on ODP, Berlin, 1991

[6] APM Ltd.: ANSA - An Application Programmer'dntroductionto the Architecture,
Cambridge, UK, 1991

[7] APM Ltd.: ANSA - An Engineer'sntroductionto the Architecture,Cambridge,UK,
1989

[8] M.S. Verrall: Unity Doesn'timply Unification or OvercomingHeterogeneityProblems
in DistributedSoftwareEngineeringenvironmentsin: The ComputerJournal,Vol. 34,
No. 6, 1991

[9] M. Merz: GenerischeUnterstitzung verteilter Client/ Server-Kooperationn offenen
Systemen(Generic Support for Distributed Client/ Server Cooperationin Open
Systems), Diploma Thesis, Dept. of Computer Science, University of Hamburg, 1992

[10] P. Gaudette: A Tutorial on ASN.1, Technical Report NCSL/SNA, 1989

[11] S. Pappe:Datenbankzugriffin offenen Rechnernetzer(DatabaseAccessin Open
Systems), Springer-Verlag, Berlin, 1991

[12] M. Bearman K. Raymond:FederatingTraders:An ODP Adventure,in: Proceedings
International IFIP Workshop on ODP, Berlin, 1991

[13] A. Wolisz, V. Tschammer: Service Provider Selection in an Open Services
Environment,in: SecondEEE Workshopon Future Trendsof Distributed Computing
Systems, IEEE Computer Society Press, Los Alamitos, 1990

[14] J.Nehmer,F. Mattern: ServiceModelingin DistributedOperatingSystemsjn: Second
IEEE Workshopon FutureTrendsof DistributedComputingSystemsJEEE Computer
Society Press, Los Alamitos, 1990

[15] A. Birrel, B. J. Nelson:ImplementingRemoteProcedureCalls, in: ACM-TOCS, Vol.
2,1984

[16] Sun Microsystems: Network Programming Guide, 1990

[17] R. N. Chang,C. V. RavishankarA Service Acquisition Mechanismfor the Client/
ServiceModelin Cygnus,in: 11th InternationalConferenceon DistributedComputing
Systems, Arlington, Texas, 1991

i e

The Generlc Cul Edtor

{ Save] (Wwrite TDO] (Dismiss) { Comment)

Mileage
Eonking Date

& Days

1000 S0 lH_H_ S000

i]4.1an. 1333

.m.um_ Tenxt Editor ¥ — sysdescrtut, dir; fusersfdhisl,
(File) (Wiew #) (Edit #) { Find v

I Sservice Description File For CarkRenkal serwice

TYPE GalcarT RECORD £
INTEGER. LABEL "Mileagqe". RANGE TIWY S0 S000:
STRIMG, LABEL "Bookl ng pate”;
INTECER, LAEEL "# Daws', ABMNCE TINWY 1 50;

4. LBBEL "Select Car Forn':
TYPE SAespT STRING, L&EEL "Sarver Respanse”;
TYPE EookT IMTECER, LAEBEL "Confirn booking", RA&NCE RADL
TYPE AbortT INTEGER, LABEL "Confirm to abort”™, RANGE RN

SERYICE Selcar 1 §
AEQUEST salCarT:
AESPONSE SRespT:
Wmmem TEST;
SERVICE Confirm 2 4

10 | e P—— 50
Model Bl 525 | W Solf | Fiat Una
Customer Mame Merz
First Name Mlchaal
| Street Yogt—Koelln—5tr. 30
Zip Cnde 2000
Ciky Hamburg 54,
Payment Wisa # | MasterCard # | &dmes H | Invoice
{4 i The Generic Gui Editor

CTATEG ¢
INIT: salcar -1 STRTEZ;
STRTEZ: Seliar -» STHTEZ:
STRTEZ: Confirn - INIT:
N STATEZ: Abort -3 INIT;

¥:

[5ave) [Writa TDO] (Dlsmlss) Comment)

MastorCard # 1201398992212 [alw]

”._l..

