
Constraint�based Diagnosis for Intelligent LanguageTutoring SystemsWolfgang Menzel & Ingo SchröderProjekt DAWAI � Fachbereich Informatik � Universität HamburgVogt�Kölln�Straÿe 30 � 22527 Hamburg � Germanymenzeljingo.schroeder@informatik.uni-hamburg.deAbstractIf the student of a foreign language is expected to bene�t from the interactive nature ofcomputer�based tutoring systems, solutions are required which combine the ability to acceptfree form input with the production of helpful feedback on the quality of the utterancesreceived. A solution is presented which provides language learning systems with the desireddiagnostic capabilities for a wide range of syntactic, semantic, and domain�related phenomena.It is based on a procedure for structural disambiguation in a multi�level representation usinggraded constraints. ZusammenfassungDie sinnvolle Nutzung der interaktiven Möglichkeiten von Sprachlehrsystemen erfordert Ana-lyseverfahren mit der Fähigkeit, auch für frei formulierte Schülerlösungen eine präzise Bewer-tung der sprachlichen Qualität zu ermitteln und diese in aussagekräftige Lernhinweise für denSchüler umzusetzen. Es wird ein Ansatz vorgestellt, der die gewünschten Diagnosefähigkeitenfür einen groÿen Bereich an syntaktischen, semantischen und domämenspezi�schen Phänomenzur Verfügung stellt. Ausgangspunkt ist ein Verfahren zur strukturellen Disambiguierung einerMehrebenenrepräsentation auf der Basis von bewerteten Constraints.1 IntroductionTwo requirements have to be ful�lled by any stimulating language learning environment:1. It should encourage the creative use of language in communicatively relevant settings.2. It should provide the student with adequate feedback regarding the quality of her utter-ance, covering both grammaticality and communicative appropriateness.So far no technical solution exists which satis�es both requirements at the same time. If, onthe one hand, the system design has put emphasis on high quality feedback the student willalmost certainly have to restrict her choice to a few prede�ned items for which speci�callytailored responses can be provided. Unfortunately, such restricted exercises bear only littleresemblance to a situation of natural person�to�person communication and any creative useof language is severely hampered. On the other hand, a broad coverage in free form input isalways achieved at the expense of sacri�cing the diagnostic capabilities of the system.1



The di�culty of combining these two desiderata in a single solution obviously results froma basic characteristic of natural language which comes along with a vast amount of localambiguity if special aspects (e. g. its syntax, semantics, pragmatics) are treated in isolation.Under such conditions the parsing of perfectly composed utterances becomes a serious problemlet alone the possibility to accept di�erent kinds of deviations as they are regularly producedby beginning students. Here, the system has to solve two tasks at the same time:1. Robust parsing: Try to obtain a structural interpretation of the student's utterance evenif it possibly contains unexpected or unacceptable constructions.2. Fault diagnosis: Try to identify the particular kind of problem in terms of explanationpossibilities and strategies for remedy.Although being fundamentally di�erent, these two tasks are highly interrelated and dependstrongly on each other: Whereas diagnosis is possible only with respect to a presumed under-lying structure of the erroneous utterance (e. g. `If this constituent is meant to be the subjectof the sentence, it is of wrong case'), parsing can be performed e�ciently only if strong hy-potheses about the particular kind of errors are available (e. g. `If the case of this noun wasnominative instead of dative, it could be the subject of the sentence'). Thus, preliminaryparsing hypotheses are always needed prior to the diagnosis, and at the same time diagnosticresults are a prerequisite of the parsing procedure. Moreover, while robust parsing requiresan at least partial ignoring of certain regularities of the language system (otherwise no inter-pretation can be found for a deviant utterance), diagnosis needs to check whether the samewell�formedness conditions hold (otherwise not a single error can be detected).In this respect the diagnosis of natural language utterances di�ers remarkably from otherdiagnostic tasks, where the structure of the system under diagnosis is expected to be knownin advance (Davis 1994, Struss 1992). The natural language diagnosis requires a structuralidenti�cation to become part of the diagnosis proper. Because of the mutual dependency, bothtasks will have to be carried out in a highly integrated computational framework which allowsto check structural hypotheses and well�formedness conditions simultaneously.Robust behavior for natural language parsing systems is usually attempted by means of over�generating rule systems which contain error rules for extra�grammatical phenomena. For lan-guage learning purposes this would imply to anticipate and explicitly specify every erroneousconstruction which could possibly be produced by a student (Yazdani 1986). An alterna-tive approach uses constraint retraction techniques where certain well�formedness conditionsare temporarily ignored if otherwise no consistent structural description can be generated(Uszkoreit 1991, Erbach 1993). Thus, weaker instances of grammar rules are derived from thenormal ones whenever this seems necessary.Applications to the area of foreign language learning usually require a combination of bothtechniques. Schwind (1995), for instance, uses a constraint retraction approach for the class ofagreement errors and error rules for structural faults (e. g. missing constituents, inappropriatelinear orderings etc.). While error rules lend themselves easily to the creation of small scaledemonstration systems, it seems, however, infeasible to exhaustively anticipate every potentialerror con�guration and to describe it by means of corresponding error rules. Constraintretraction techniques, on the other hand, require a rather strong structural backbone to rely2



upon. Therefore, their application is usually restricted to selected types of regularities andseverely limited exercises (Menzel 1988, Menzel 1990).Both error rules and constraint retractions provide a good starting point for the derivation oferror diagnoses. As long as singleton errors are considered, simple error explanation schemescan be de�ned and used to produce the desired feedback for the student.Unfortunately, both techniques lead to tremendous e�ciency problems since they neutralizevaluable information which even in the error free case is urgently needed to constrain thesearch space. This problem becomes a particularly serious one, because neither approach usesgraded ratings for (partial) structural hypotheses and, therefore, does without an importantmeans to guide the search for an appropriate solution.Particularly, the application of empirically obtained gradings in probabilistic grammars hasturned out to be a major factor for introducing a considerably higher degree of robustness inthe parsing of natural language (cf. Briscoe 1994). However, probabilistic grammars have tobe trained on huge corpora of natural language examples, taken e. g. from running newspapertexts. If a grammar for diagnostic purposes is required it will need to be trained on similarcollections of typical learner utterances. This approach does not seem particularly promisingsince it can hardly be imagined how a corpus could be collected, which is statistically repre-sentative not only with respect to relevant language structures but moreover to possible errorsituations and exercise types. Notice that one and the same utterance can be acceptable inone context but quite inappropriate in another. Therefore, the probabilistic approach wouldrequire corpora which are properly annotated according to the di�erent error categories andexercise contexts, because only then it might become possible to induce the relevant infor-mation on the distinction between the acceptable and the unacceptable case from the givendata.Like most contemporary approaches to robust parsing probabilistic grammars su�er from abiased focus on the isolated treatment of syntactic phenomena. This syntax�oriented approachnot only causes severe di�culties with respect to local ambiguity and e�ciency, in addition, itputs tremendous limitations on the quality of diagnostic results since it reduces diagnosis to acontext insensitive similarity comparison. For example, a purely syntax�based diagnosis willcertainly �nd two equally likely explanations for the number disagreement in the example (1)where the noun can be corrected to singular, or alternatively the verb can be changed toplural.(1) * The cars drives fast.Given a suitable context (e. g. where only one car is under consideration) this diagnostic un-certainty immediately disappears. In certain cases contextual information might even put amuch stronger perspective on an utterance which eventually can override syntactic evidence.In such cases a convincing diagnosis can only be obtained if the diagnostic component takesinto consideration as much contextual information as possible. Such a representation of con-text conditions should include knowledge about the domain of discourse, about the discoursesituation (who is speaking to whom, where, and when) as well as about previous discoursecontributions.This contextual embedding then provides an anchor point for the diagnosis, and error expla-nations can be found which are well motivated in the given situation. A quite similar strategy3



can also be observed with human teachers, who never consider an erroneous utterance in iso-lation, but try to collect evidence from very di�erent sources to infer the most likely intentionbehind the student's contribution. These assumptions about the underlying intention are notonly used to �nd a plausible diagnosis but, furthermore, serve as a reference for possible repairproposals: `If you want to express this and that, better try it the following way. . . .'On the other hand, it should be noticed that contextual information never provides an absolutepoint of reference. In any case it is based on nothing but assumptions on likely studentbehavior (e. g. she will answer a given question properly) and nobody is able to prevent astudent from producing strange responses. Under these circumstances any assumption aboutplausible behavior is doomed to fail and might become subject of diagnostic e�orts itself.To avoid a system break down under such circumstances every piece of model informationhas to be defeasible, and partial representations for the di�erent levels of language have tobe loosely coupled. The robust behavior and diagnostic abilities of the system are based onthe assumption that combined deviations on di�erent levels will be encountered only in ratherexceptional cases. Under usual conditions a bidirectional information �ow among representa-tional levels will facilitate mutual support which allows to overcome, for instance, syntacticdi�culties by means of semantic or domain�speci�c knowledge and vice versa.Whereas with the advent of multimedia�based tutoring systems a rich body of possibilitiesfor a close�to�reality presentation of exercise contexts are available, there is an obvious lackof appropriate means for the representation of these knowledge components in a way whichfacilitates their purposeful exploitation in procedures for robust parsing and error diagnosis.This paper presents a proposal for an integrated approach to robust parsing and error diagnosiscombining� a multi�level representation which allows to bring together syntactic, semantic, prag-matic, and domain�speci�c knowledge in a uniform way,� the use of graded, hence defeasible, constraints on all levels, and� a common arbitration mechanism which allows to weigh evidence from very di�erentsources against one another.The approach is based on a procedure for structural disambiguation which eliminates elemen-tary structural descriptions from an initially complete, but highly underspeci�ed representa-tion of all structural interpretations for a given utterance. Thus, it especially facilitates thecomparison of alternative interpretations and the arbitration of possibly contradicting evi-dence. Section 2 gives a short introduction to the underlying eliminative parsing mechanismwhich is based on constraint satisfaction techniques. This basic procedure will be extendedto accommodate graded constraints and is applied to a multi�level representation. Section 3and 4 contain the corresponding details and analyze the consequences for the robustness ofthe resulting parsing procedure. Afterwards, Section 5 gives a number of examples for thediagnostic capabilities achieved so far. Finally, we summarize the approach in Section 6.
4



2 Eliminative ParsingParsing by means of constraint satisfaction has �rst been described by Maruyama (1990b).It was developed for the application in an interactive machine translation system (Maruyama1990a). Later the idea has been extended to the processing of word hypothesis lattices insteadof linear strings (Harper, Jamieson, Zoltowski & Helzerman 1992, Harper, Jamieson, Mitchell,Ying, Potisuk, Srinivasan, Chen, Zoltowski, McPheters, Pellom & Helzerman 1994, Harper& Helzerman 1994) and has been implemented on a massively parallel hardware architecture(Helzerman & Harper 1992).
1 765432

subj

nd

nd

ac

pp
pc

The exhibition is opened by the mayor.

v1 = hnd ; 2iv2 = hsubj ; 3iv3 = hnil ; 0iv4 = hac; 3i v5 = hpp; 4iv6 = hnd ; 7iv7 = hpc; 5i(a) (b)Figure 1: (a) Syntactic dependency tree for an example utterance: For each word form aunique subordination and a label, which characterizes the kind of subordination, are to befound. (b) Labellings for a set of constraint variables: Each variable corresponds to a wordform and takes a pairing consisting of a label and an index (corresponding to the superordinatedword form) as a value. A value of hnil ; 0i indicates the root of the tree.Parsing by constraint satisfaction aims at producing a dependency tree (cf. Figure 1a), whereeach word form of an utterance is unambiguously subordinated to another with a uniquelabel describing the kind of dependency relation between the two candidates. Admissibledependency relations are speci�ed using constraints (cf. Figure 2).fXg : ArticleAgree : Article : X#cat=ART ! X.label=nd ^ X"cat=NOUN ^X#pos<X"pos ^ X#case=X"case ^ X#num=X"num ^ X#gender=X"gender`Articles modify nouns to the right and agree with them with respect to case, number, and gender.'Figure 2: A simple constraint: It consists of a variable declaration, a name, a class and aformula of propositional logic which encodes grammatical knowledge.Basically, a constraint consists of a logical formula which is parameterized by variables (inour example X) which can be bound to an edge in the dependency tree. It is associated witha name (e. g. ArticleAgree) and a class (e. g. Article) for identi�cation and modularizationpurposes respectively. Selector functions are provided which facilitate access to the label ofan edge (e. g. X.label) and to lexical properties of the dominating node (e. g. X"case) andthe dominated one (e. g. X#case). Being universally quanti�ed, a typical constraint takesthe form of an implication with the premise describing the conditions for its application.Accordingly, the constraint of Figure 2 reads as follows: Each article (X#cat=ART) modi�es anoun (X"cat=NOUN) to the right (X#pos<X"pos) as a noun modi�er (X.label=nd) and agreeswith its dominating form in regard to case, number, and gender (X#case=X"case . . . ). Inorder to restrict the complexity of the constraint satisfaction problem (CSP) only unary and5



binary constraints are used. Hence, no more than two variables are allowed to appear in aconstraint, and it is not possible to express conditions for a structural con�guration of morethan two dependency edges. This, certainly, is a rather strong restriction. It puts severelimitations on the possibility to model grammatical and extra�grammatical knowledge, whichwill be discussed in Section 5.2.Given the above speci�cation of a parsing problem, the word forms of an utterance can beinterpreted as the variables of a CSP, which are to receive a unique value assignment as a pairconsisting of a label and a dominating word form. Figure 1b shows such an assignment whichexactly corresponds to the structure in Figure 1a.Initially the constraint net contains all possible structural interpretations in a highly denserepresentation. This initial state corresponds to a structural description of maximum am-biguity. Each variable's domain is bound to the complete set of subordination possibilities.The constraint satisfaction procedure successively discards local assignments if they are notlicensed by the set of constraints. Eventually, an almost disambiguated structure with mostlyunique value assignments might become available, from which a single structural descriptioncan easily be extracted.Unfortunately, in the presence of an inconsistent CSP the procedure described so far is not ableto �nd a solution. It, therefore, still lacks the desired robust behavior which would enable it todetermine a structural description for erroneous utterances, too. Although the basic algorithmcan easily be modi�ed to let the last value assignment survive under any circumstances, thisonly introduces a rudimentary notion of robustness which is highly sensitive to arbitraryvariations, e. g. in the sequence of constraint applications.3 Robust Parsing with Graded ConstraintsFor deviant input sentences it is usually not possible to �nd a structural interpretation whichsatis�es all constraints simultaneously. In terms of CSP the problem is over�constrained . Forsuch a problem one can try to �nd a solution which at least partly ful�lls the requirements.Partial constraint satisfaction problems (PCSP; Tsang 1993, Freuder & Wallace 1992, Wallace& Freuder 1995) can be divided into minimal violation problems (MVP), where you wantto �nd a labelling such that the minimum constraints are violated, and the maximal utilityproblem (MUP), the solution of which assigns values to a maximum subset of the variables withno constraints violated. Therefore, the partial constraint satisfaction problem can be seen as ageneralization of the traditional CSP. In the context of constraint parsing the minimal violationinterpretation seems more appropriate since a solution of the parsing process (as opposed toscheduling tasks for instance) should be a structure that covers the whole sentence, not justparts of it. The MVP approach introduces robustness into constraint parsing because now asolution for arbitrary input, possibly with some constraints violated, can be found.This kind of robustness, however, is not quite satisfactory because all the constraints aretreated as being of equal importance which, in general, is not the case. Therefore, everyconstraint c receives a weight w(c) chosen from the interval [0; 1] to denote how serious oneconsiders a violation of the constraint (cf. Figure 3). Furthermore, complex constraints likethe one in Figure 2 are broken down into smaller ones in order to facilitate an as �ne graineddistinction as possible among di�erent kinds of constraint violations.6



fXg : SubjInit : Subj : 0.0 :X.label=subj ! X#cat=NOUN ^ X"cat=FINVERB`A subject is a noun and it modi�es a �nite verb.'fXg : SubjNumber : Subj : 0.1 :X.label=subj ! X#num=X"num`The subject agrees with the verb with respect to number.'fXg : SubjOrder : Subj : 0.9 :X.label=subj ! X#pos<X"pos`The subject is placed in front of the verb.'fX, Yg : SubjUnique : Subj : 0.0 :X.label=subj ^ X"id=Y"id ! Y.label6=subj`The subject is unique for a given verb.'Figure 3: Very restrictive constraint grammar fragment for subject treatment in German:Graded constraints are additionally annotated with a score.Now di�erent types of conditions can easily be expressed with constraints:� Hard constraints with score w(c) = 0:0 (e. g. constraint SubjUnique) exclude totallyunacceptable structures from consideration. This kind of constraint also initializes thespace of admissible solutions (e. g. constraint SubjInit; Menzel 1994).� Typical well�formedness conditions like agreement or word order are speci�ed by meansof weaker constraints with score 0:0 < w(c) � 1:0, e. g. constraint SubjNumber.� Weak constraints with score 0:0 � w(c) < 1:0 can be used for conditions that are merelypreferences rather than error conditions, e. g. constraint SubjOrder prefers subject topi-calization to object topicalization in German, but does not enforce it (and does not evenput a strong penalty on it). Uncertain information, e. g. derived from prosodic cluesor fuzzy domain�speci�c knowledge, can also be incorporated by weak constraints. Un-certain and preference�based information makes sure that, similar to a human listener,only a single structure that �ts the given conditions best will be produced. As long asthere is any kind of preference, be it grammatical or not, no enumeration of possiblesolutions will be generated.1� Constraints with score w(c) = 1:0 are totally ine�ective due to the multiplicative com-bination.The solution of such a partial constraint satisfaction problem with scores2 is the dependencystructure of the utterance that violates the fewest and weakest constraints. In order to formal-ize this intuitive notion, the notation of constraint weights is extended to scores for dependencystructures. The scores of all constraints c violated by the structure under consideration s aremultiplied and a minimum selection is carried out to �nd the solution s0 of the PCSP:1If, for some reason, more than one possible interpretation of an utterance is desired the constraint parsingapproach can easily be modi�ed to return all the structures whose ratings do not di�er too much from thebest rating.2Sometimes this kind of CSP is also called stochastic CSP or constraint satisfaction optimization problem.7



s0 = argmins Yc w(c; s)Since a satis�ed constraint should not decrease the score of a structure it holds that:w(c; s) = ( w(c) : if structure s violates constraint c1:0 : elseThe use of scores contributes directly to an improved robustness because it is now possible torank constraint violations according to their impact on the acceptability of a solution.For evaluation purposes a prototypical diagnosis component for German as a foreign languagehas been developed. Although the prototype is limited yet, it has shown to be sophisticatedenough to be immediately applied within a teaching unit. So far the grammar contains nearly160 constraints and covers the following syntactic phenomena: active (future, present, per-fect, past, and past perfect) and passive (present and past) voice of the verb, verbal andnominal genitive attributes, nominal groups including articles, adjectives, and nouns (declina-tion classes, de�niteness, and adverbial adjective modi�ers), prepositional phrases, and simplesubordinated clauses. Modal verbs, negations, relative clauses, and coordinations have notbeen dealt with yet. In order to study the robustness properties of this grammar the Germansentence `Der Mann besichtigt den Marktplatz. (The man visits the marketplace.)' has beensystematically distorted by introducing di�erent kinds of syntactic errors, and a global errormeasure has been de�ned to describe the degree of disorder for the resulting variations of theexample utterance:Case agreement The case of the subject as well as the object has been varied to take nom-inative, genitive, and accusative case respectively. While a shift from nominative oraccusative to genitive counts as a single error, mixing up nominative and accusativecounts as a double fault, because it is more di�cult then to get the structural interpre-tation right.Number agreement Analogous to the case parameter the subject and the object have beenassigned singular and plural word forms. Note that, although there is no number agree-ment between �nite verb and object in German, the chance of interchanging subjectand object increases if the desired object agrees with the verb. Therefore, the analysisbecomes increasingly more di�cult when one abolishes the agreement of the subject andestablishes it for the object.Word order While German has a relatively free word order, there is nevertheless a slightpreference of placing the subject in front of the object. It should be noted that themarked word order does not count as an error, but a preferred word order neverthelesshelps to �nd the correct analysis.The resulting 72 variations, some examples of which illustrate the kind of errors and theerror measure e in Figure 4b, have then been analyzed using the above mentioned grammar.Figure 4a shows the accumulated results (for this simple example). Utterances that contain8



Percentage of correct analyses100%80%60%40%20%0% Error degree for syntactic faults0 1 2 3 4 5
(2) `Den Marktplatz besichtigen die Männer.'! e = 0, no error, but marked wordorder(3) `Die Männer besichtigen der Marktplatz.'! e = 2, nominative case instead ofaccusative(4) `Den Marktplatz besichtigen den Mann.'! e = 4, combined errors(5) `Die Marktplätze besichtigen den Mann.'! e = 7, combined errors(a) (b)Figure 4: Percentage of correct analyses depending on the number of syntactic errors forsyntactic grammar using graded constraints: As long as only up to two errors are made thecorrect analysis can usually be found; naturally, more and combined errors make the analysisfail.only a few rather simple errors are analyzed correctly; only in cases of combined constraintviolations the analysis starts to break down.The use of graded constraints for the parsing process guarantees that the least dispreferredstructure is selected as the solution. The number of violated constraints is minimized asopposed to the traditional approach where the application of error rules is minimized.4 Multi�Level ParsingHuman language understanding processes are extremely robust, because they exploit allkinds of information necessary to disambiguate an utterance and identify its meaning. Notonly grammatical knowledge (or knowledge about language in general), but also contextual,domain�speci�c, and even common sense knowledge contribute to the overall task.To mimic a similar behavior a multi�level parsing is adopted. Di�erent description levels fora natural language utterance are established in parallel, and partial descriptions are mappedonto each other by means of graded constraints, thus providing a loose coupling among descrip-tion levels (Menzel 1995). Evidence for a structure on one level leads to preferred structureson other levels without creating a fatal dependency: Mutual reinforcement takes place as longas supporting cross�level evidence is available, while its absence leads to autonomous deci-sions, and even contradicting information will not result in a failure of the overall analysis.The approach shows some resemblance to results from psycholinguistic research, which, onthe one hand, support the autonomy of di�erent description levels during human languageunderstanding (Forster 1979) and, on the other hand, corroborate the mutual in�uence ofthese levels (Marslen-Wilson & Tyler 1987).Parsing by constraint satisfaction as described so far must be modi�ed in order to allowthe use of multiple description levels. Instead of one constraint variable for each word formof the utterance one has to provide a constraint variable for each pairing of a word form9



and a description level. Constraints can be divided into intralevel and interlevel constraintsnow, depending on whether they pose restrictions on subordination edges on one level oron di�erent levels. The solution does not form one single dependency tree, but a whole setof trees. Figure 5 shows two such dependency trees for the levels of syntax and semanticsrespectively.3 Constraints for the semantic level result from lexical properties of the wordforms and contextual information of the exercise.
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The exhibition is opened by the mayor. The exhibition is opened by the mayor.Figure 5: Collection of dependency trees: Each tree represents a description level.The simplest way to present the contextual embedding to the student is to provide her with atextual description of a simple situation like the following and to ask her to answer correspond-ing questions. Alternative presentation modes might include spoken or visual information.Der Mann besichtigt den Marktplatz.Dort tri�t er Anne. Aber sie ignori-ert ihn. Verärgert geht der Mannin das alte Rathaus. Dort wirdeine Ausstellung vom Bürgermeistererö�net.
The man visits the marketplace. Hemeets Anne there. But she ignoreshim. Being annoyed, the man entersthe old town hall. There, an exhibi-tion is opened by the mayor.As long as this description is simple enough a suitable representation of its propositional con-tent can be derived automatically. It later is fed into the parsing system again to constrain thesemantic level when analyzing a student's response. Thus, expectations are geared towardssensible and relevant contributions without con�ning the student to particular syntactic con-structions.Using again the German sentence `Der Mann besichtigt den Marktplatz.' it can be illustratedhow the representation of di�erent description levels helps to increase the robustness of thesystem. The 72 variations (cf. Section 3) are analyzed in nine di�erent contexts where thesortal restrictions of the verb as well as the domain knowledge either support, do not in�uence,or contradict the desired solution.Therefore, in addition to the syntactic parameters from Section 3 two more dimensions areintroduced:Sortal restrictions This criteria determines whether the semantic classes of the desired argu-ments match the sortal restrictions of the verb. A neutral value means that no sortalrestrictions are checked, e. g. due to missing information.3The visualization as trees is especially helpful for the grammar designer. The semantic level makes clearthat it is not always bene�cial to structure the solutions strictly as trees (cf. Section 5.2).10



Domain knowledge This parameter determines whether the desired utterance is consideredtrue or false in the domain. Given that the context of the exercise supports the desiredinterpretation, the unwanted readings get penalized, while a contradiction with thecontext leads to a degradation of the desired interpretation. If the domain knowledgeis neutral regarding the interpretation under consideration no structural con�gurationgets negative support.4Table 1 shows for all 648 more or less deviant variants of the example utterance whether theparsing process manages to �nd the desired solution.5The rows and columns are ordered by the number of errors they contain, so that you �nd theseriousness of deviations increasing when proceeding from left to right and from top to bottom.In other words, the top left hand corner of Table 1 contains the results for utterances with noor few errors, the bottom right hand corner those with combined errors. A dark backgroundcoloring ( + + ) indicates those sentences which could be analyzed as desired with unmarkedas well as marked word order, while a light coloring ( + � ) denotes success for the markedcase and failure for the unmarked one. White as the background color ( � � ) �nally signalsthat the original structure of the utterance could not be found in either case.This kind of coloring gives a visual impression of the system behavior with respect to ro-bustness. Using the available information on a complementary level as an anchor point evenutterances with a remarkable number of errors can be analyzed correctly. The analysis failsto �nd the desired interpretation only in cases of highly complex distortions. While nearlyhalf of the results for sentences with an error measure of three were wrong when only thesyntactic level was represented, almost all utterances with an error measure up to �ve areinterpreted correctly when enough semantic and domain�speci�c support is available. Ofcourse, contradicting semantic and/or domain�speci�c expectations lead to a decrease in syn-tactic robustness. This was to be expected because of the symmetry of representation levelsand constraints. The use of di�erent knowledge levels leads to synergy e�ects, since none ofthe representation levels alone could achieve a similar degree of robustness.Figure 6, which is an extension of Figure 4, shows the percentage of correctly analyzed utter-ances depending solely on the error measure for a supporting, neutral, and violating contextrespectively. If one does not consider the source of the errors, the above tendency becomeseven clearer: The use of semantic and domain�speci�c knowledge greatly enhances the syntac-tical robustness in the supporting case. Naturally, the robustness is reduced if the additionalinformation contradicts the intended interpretation.It should be noted that, although we have stressed the robustness against syntactic deviationsto enable the comparison of the multi�level representation with the syntax�only case, therobust behavior is symmetrical with respect to the di�erent levels. Thus, positive informationon the syntactic level also helps to �nd a semantic interpretation (which resembles more tra-ditional serial architectures where semantic processing is based on the output of the syntacticcomponent).4The simplest way to incorporate domain knowledge into the constraint system is to encode the propositionalcontent of the context directly as constraints.5It is not possible to provide unique test sentences for every parameter combination since in the Germanlanguage word forms often coincide, e. g. the nominative and accusative case of nouns.11



Error 0 1 1 2 2 2 3 3 4Domain true neut. true false neut. true false neut. falseSorts corr. corr. neut. corr. neut. viol. neut. viol. viol.0 Nom, Acc c, v ++ ++ ++ ++ ++ ++ ++ ++ + �1 Nom, Acc c, c ++ ++ ++ ++ ++ ++ ++ ++ + �1 Nom, Gen c, v ++ ++ ++ ++ ++ ++ ++ ++ + �1 Gen, Acc c, v ++ ++ ++ ++ ++ + � + � � � � �2 Nom, Acc v, v ++ ++ ++ ++ ++ ++ ++ ++ + �2 Nom, Gen c, c ++ ++ ++ ++ ++ ++ ++ � � � �2 Nom, Nom c, v ++ ++ ++ ++ ++ ++ ++ ++ + �2 Gen, Acc c, c ++ ++ ++ ++ ++ + � + � � � � �2 Gen, Gen c, v ++ ++ ++ ++ ++ + � + � � � � �2 Acc, Acc c, v ++ ++ ++ ++ + � � � � � � � � �3 Nom, Acc v, c ++ ++ ++ ++ � � � � � � � � � �3 Nom, Gen v, v ++ ++ ++ ++ ++ ++ ++ � � � �3 Nom, Nom c, c ++ ++ ++ ++ + � � � � � � � � �3 Gen, Acc v, v ++ ++ ++ ++ ++ + � + � � � � �3 Gen, Gen c, c ++ ++ ++ ++ + � � � � � � � � �3 Gen, Nom c, v ++ ++ ++ ++ ++ + � + � � � � �3 Acc, Acc c, c ++ ++ ++ ++ + � � � � � � � � �3 Acc, Gen c, v ++ ++ ++ ++ + � � � � � � � � �4 Nom, Gen v, c ++ ++ ++ ++ + � � � � � � � � �4 Nom, Nom v, v ++ ++ ++ ++ + � � � � � � � � �4 Gen, Acc v, c ++ + � � � � � � � � � � � � � � �4 Gen, Gen v, v ++ ++ ++ ++ + � � � � � � � � �4 Gen, Nom c, c ++ ++ � � � � � � � � � � � � � �4 Acc, Acc v, v ++ ++ ++ ++ + � � � � � � � � �4 Acc, Gen c, c ++ ++ + � + � � � � � � � � � � �4 Acc, Nom c, v ++ ++ ++ ++ + � � � � � � � � �5 Nom, Nom v, c ++ ++ ++ ++ � � � � � � � � � �5 Gen, Gen v, c ++ + � � � � � � � � � � � � � � �5 Gen, Nom v, v ++ ++ � � � � � � � � � � � � � �5 Acc, Acc v, c + � � � � � � � � � � � � � � � � �5 Acc, Gen v, v ++ ++ + � + � � � � � � � � � � �5 Acc, Nom c, c + � � � � � � � � � � � � � � � � �6 Gen, Nom v, c ++ + � � � � � � � � � � � � � � �6 Acc, Gen v, c + � � � � � � � � � � � � � � � � �6 Acc, Nom v, v + � � � � � � � � � � � � � � � � �7 Acc, Nom v, c + � � � � � � � � � � � � � � � � �Error Case NumberTable 1: Parsing results for a systematically distorted sentence: In the table from left to rightand top to bottom the number and seriousness of errors increase. Case and number agreement(`c' means correct, `v' violated) is given for the subject and object respectively.
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Percentage of correct analyses100%80%60%40%20%0% Error degree for syntactic faults0 1 2 3 4 5 6 7violating neutral supportingFigure 6: Percentage of correct analyses depending on the number of syntactic errors and,additionally, parameterized by the kind of semantic and domain�speci�c support: The betterthe semantic and domain�speci�c support, the more errors can be compensated for. Neutralsupport means no support as in Figure 4.For all applications that use some kind of score or probability a major concern is the acquisitionof those numbers. Although some research dealing with the automatic extraction of constraintsfrom tree corpora has been carried out (Schröder 1996), the grammar (including the constraintweights) for the diagnosis has been developed manually by means of plausibility considerationsonly. It turned out that the main results � robustness against a remarkable number of errorsand support from complementary levels � remain surprisingly stable when subjected to smallmodi�cations of the constraint weights.5 DiagnosisBased on the constraint parsing procedures introduced and extended in the Sections 2 to 4a simple language learning system has been implemented. It is rather limited in its breadthsince only a few teaching units have been designed. In these units the students are askedto answer some questions about a given situation or describe it in their own words. Thus,the students have to produce free form sentences and (optionally) understand given languageinput.Since mistakes in students' language use lead to constraint violations it is quite a simple taskto identify the errors in the parsing result. An appropriate interpretation component hasto map the set of constraint violations to a set of possible explanations. It is not a trivialone�to�one mapping, since some weak constraints should probably not lead to an explanation,while others have to be grouped into clusters and reported to the student as one consistentcompound diagnosis. Nevertheless it has been found that the design of the interpretationprocess is fairly straightforward.5.1 Sample resultsIn the following we give some examples for the quality of errors that can be recognized by thediagnosis component. 13



Partial parsing If it is not possible to �nd a complete main clause that can be structuredas a tree with the �nite verb as the root, a partial analysis is performed.`Das alte Rathaus.' �! Missing subordination of the noun `Rathaus'`Der Mann. . . Klaus schläft.' �! Missing subordination of the noun `Mann'Agreement Verbs and their arguments, articles and nouns, adjectives and nouns, preposi-tions and nouns etc. agree with respect to gender, case, number, person etc.`Die schöne Mann schläft.' �! Missing gender agreement for the article `die'`Der Mann besichtigt dem Marktplatz.' �! Missing case agreement for the article `dem'Word order In the German language verbs are placed at the second position in main clauses,and the rest of the verb arguments has a canonical ordering, too.`Die Stadt besichtigt der Mann.' �! Object topicalization`Der Mann die Stadt besichtigt.' �! Wrong word order, verb not in second positionIt should be noted that the �rst sentence is syntactically absolutely correct. But in theabsence of other (non�syntactic) reasons for the object topicalization it reads a little bitstrange.Auxiliary selection Verbs determine which auxiliary (`haben' or `sein') is used for theirperfect form.`Der Mann ist die Stadt besichtigt.' �! Wrong auxiliary `ist'`Der Mann hat in die Stadt gegangen.' �! Wrong auxiliary `hat'Case frames Verbs have case frames that must be �lled by verb arguments.`Schläft.' �! Missing �rst argument`Der Mann besichtigt.' �! Missing second argumentSortal restrictions Verbs pose certain restrictions on the semantic classes of their argumentslike animacy.`Die Stadt schläft.' �! Violation of sortal restrictions for the �rst argument`Der Mann sieht die Idee.' �! Violation of sortal restrictions for the second argumentThe violation of sortal restrictions often indicates a metaphorical use of the verb. Bothexample sentences do have a plausible interpretation under certain assumptions. Whethersuch a metaphorical use should be allowed can be controlled by the corresponding con-straints.Contextual restrictions A representation of the embedding context makes it possible todiagnose not only syntactic and semantic, i. e. language inherent, mistakes, but alsoerrors regarding the propositional content or pragmatic aspects of the utterance. Thus,comprehension problems of the student while reading the introductory text can be iden-ti�ed.`Anne besichtigt die Stadt.' �! Propositional content not supported by the context`Anne wird von dem Mann ignoriert.' �! Propositional content not supported by thecontext 14



5.2 Results and Remaining Di�cultiesThe prototype is capable of performing a diagnosis of (relatively simple) natural languagesentences. By using graded constraints on all levels of processing the analysis shows a universalrobustness against a wide range of ungrammaticality and di�erent violations of context inducedexpectations. Error diagnoses can be easily extracted from the parsing results for deviant inputand immediately transformed into error explanations. Partial parsing is used as a fall�back incase a single structure for the utterance cannot be found.There is, however, a number of di�culties and problems which need to be discussed in moredetail. Although the restriction to at most binary constraints does not entail a limitation of thetheoretical expressiveness of the formalism,6 it de�nitely has some practical consequences. Tobe able to treat particular linguistic phenomena by means of binary constraints, sometimesthe grammar writer has to adopt rather arti�cial constructs. Complex verbal groups, likemodal verb constructions, for instance, normally need more than two subordination edgesto be constrained simultaneously. In the worst case, transitivity chains of arbitrary lengthmay exist. Only at the expense of introducing additional linguistically unusual as well ascomputationally expensive labels and/or levels these constructs can be described by binaryconstraints. This problem is even more urgent for interlevel�constraints that have to relateinformation on di�erent levels to each other. It is, however, possible to approximate someternary constraints by a set of binary ones. A possible solution to the problem above could beto postpone some of the more di�cult constraint checks until the structure has settled. Theneven complete transitivity checks can be performed e�ciently (Menzel 1992).While dependency trees are well suited for syntactic descriptions, they pose some problemson other levels. For instance, it is not always possible and often di�cult to express domaininformation as subordination structures. Since dependency trees use only word forms as nodes,no distinction between word form and reference object can be made. Their identi�cation,however, is viable only in applications which require a limited degree of variation in thecontext. This seems to be appropriate for a wide range of language learning situations wherethe designer of an exercise can control the context to a large extent. For more ambitiousapplications a more general solution is required.Constraint parsing does not employ knowledge about the native language of the student,although mistakes resulting from a transfer of regularities from the mother tongue to theforeign language are quite common. These kinds of errors are easily identi�ed by error rules,but require special treatment in the case of constraint parsing. Therefore, an integration ofspecial error rules into the constraint parsing procedures may be desirable.Finally, our prototype does not check the appropriateness of the student's utterance in regardto the task in question. As long as the answer does not violate any of the syntactic, semantic,and domain�speci�c expectations no corrections will be generated even if the utterance totallymisses the topic. To overcome this de�ciency the system has to be modi�ed to use dynamicconstraints, i. e. constraints speci�c to a particular task must be added when applicable (cf.Weischedel, Voge & James 1978). These constraints will be violated if the answer does notcontain a minimum amount of relevant information.6For instance, Nudel (1983) showed that every CSP with constraints of arbitrary arity can be transformedinto a binary CSP at the expense of dramatically increasing the number of possible domain values. Sincewe model natural language, it may also be interesting that constraint grammars with binary constraints arestrictly more expressive than context free grammars (Maruyama 1990a).15



A general problem not restricted to our proposal, but for all free form diagnosis componentsconcerns the certainty of diagnosis results. No diagnostic system for free form input (not evena human teacher) works absolutely correct, because the relevant information is too complex.So, while very simple exercise types like completion tests, where the number of valid answers issmall, can guarantee the correctness of their diagnosis, this is not true for free form exercises.It, therefore, seems appropriate to inform the user about this uncertainty and to recommendadditional advice from a human teacher.6 ConclusionsWe proposed multi�level parsing with graded constraints as a new technical solution for diag-nosis of free form input in intelligent language tutoring systems. The system �nds the mostappropriate interpretation of a possibly faulty utterance and identi�es the well�formednessconditions violated by the student. The key features of the approach are� scoring of all partial and complete analyses and� use of all kind of information, be it syntactic, semantic, domain�speci�c, contextual, orwhat else seems appropriate.The system of constraints constitutes a model of appropriate language use. Both the structuralinterpretation and the diagnostic results for deviant input are derived from this model ofcorrectness. This characteristic clearly justi�es the classi�cation of the approach as model�based, although constraint diagnosis super�cially seems quite di�erent from other model�baseddiagnosis approaches (Struss 1992). While other approaches can and do assume the structureto be static, both the behavior and the structural interpretation have to be described andrestricted by constraints in constraint parsing systems.A prototypical implementation has shown its applicability to language learning exercises of atleast modest degree of sophistication. It holds high promise for the development of completelanguage tutoring solutions which successfully combine a close�to�reality interaction with theability to provide the necessary feedback for improvement.AcknowledgementsThe authors thank G. Evermann, K. A. Foth, M. Fürter, M. Glockemann, A. Häming,S. Hamerich, T. Kroll, A. Popa, H. Rölke, M. Schulz, T. Schöllhammer, and N. Stock�eth,members of the summer term 1997 project group �Robust processing of natural language�, fortheir contributions to the development of the �rst prototype system.This research has been partly funded by the DFG (Deutsche Forschungsgemeinschaft) undergrant no. Me 1472/1�1.ReferencesAltmann, G. & Steedman, M. (1988), `Interaction with context during human sentence pro-cessing', Cognition 30, 191�238. 16
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