Bericht Nr. 66

4.

PASCAL/R REPORT

Joachim W. Schmidt, Manuel Mall

IFI-HH-B-66/80

January 1980

Fachbereich Informatik
Universitaet Hamburg
Schlueterstrasse 70

D-2000 Hamburg 13

(2 XXX XXX XXX AR EZXZREX AR REEZEXE ISR R SRZE SRS
*
*
*
*
*
SCAL/R REPORT *
- *
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
#*

22 X2EXXEXELESRSAXSS S SRS RS SRS AR RS RS R R

ii

10.

11.

12.

14.

15.

TABLE OF CONTENTS

- - m e ey e e e s o -
poibeclieiuiiradihengii=giu fuodumginr e gl

INtroduUCtion «eeeeeresassoesosesoeseasnssssssnssssscscs
Summary of the 1languageecevceeesncecsosososnnsns
Notation, terminology, and vocabularyc.c.o0..
Identifiers, Numbers, and Stringsccceeuvesenns

Constant definitionNs ...eeveertienconnsasosns e ae e

Data type definitions e rsesaccessaseeserressso et
6.1, Simple LYPES «.ieeeerocnresccnccnccnns Chceseneeen
6.2. Structured LYPES teeceeereenesssosccsacsssnssans

6.3. Pointer LypPeS «iveeeeeeeerosrsoesasssonsnannoacns

Declarations and denotations of variables
7.1. Entire variables ... iiieeertcieentrsaacecnsonnns

2. Component variableScivieverecrencsannannons
.3. Referenced variableseiievenreccenscssonnsns
resSSionNsS cveeesescencsonas c e et e e s s saen s e n s
. Operatorsecoe. e e e e fes e e s e e aeeas
. Function designators Ceee e cr st a e

7.
7
Exp
8.1
8.2

Statements ces e s e e s st e s e esr s s eserasssens e

G.1. Simple statements s et aseesss e eneans e

9.2. Structured statementscccc00. cevenevene

Procedure declaratiOnNs . .eeseeeeeseossosnsccaseas e e e

10.1.Standard procedures ...v.ceoesccescons creeans e

Function declarations . .ceeeeeecsosececosceccssess ceeecen s

11.1.Standard functionsc..0.. ce e, e s e s e e s s e e
Input and Output0000 P ea e e cern s e

Programsceeevecsavosnecoss cesevaen e ceveens ceeeaens

A standard for implementation and program interchange

INAeX v eeeeteeoennssonoansasososasansas teesean e es g

iii

L}

e o * .

-—

PO 00 00 0] -~ o n

Page

PASCAL/R REPORT

Joachim W. Schmidt, Manuel Mall

This version of the Pascal/R Report is based on the Pascal Report
by N. Wirth as published in Kathleen Jensen, Niklaus Wirth: Pascal
User Manual and Report, Springer Verlag, New York, Heidelberg,
Berlin, 2nd Edition, 1975. All modifications to the Pascal Report
are indicated by vertical bars.

1. Introduction

-y > Y P > - -
s

The development of the language Pascal is based on two principal
aims. The first is to make available a language suitable to
teach programming as a systematic discipline based on certain
fundamental concepts clearly and naturally reflected by the
language. The second is to develop implementations of this
language which are both reliable and efficient on presently

available computers.

The desire for a new language for the purpose of teaching
programming is due to my dissatisfaction with the presently used
major languages whose features and constructs too often cannot
be explained logically and convincingly and which too often defy
systematic reasoning. Along with this dissatisfaction goes my
conviction that the language in which the student is taught to
express his ideas profoundly influences his habits of thought
and invention, and that the disorder governing these languages
directly imposes itself onto the programming style of the
students.

There is of course plenty of reason to be cautious with the
introduction of yet another programming language, and the
objection against teaching programming in a language which is
not widely used and accepted has undoubtedly some

justification, at least based on short term commercial
reasoning. However, the choice of a language for teaching based
on its widespread acceptance and availability, together with the
fact that the language most widely taught is thereafter going to
be the one most widely used, forms the safest recipe for
stagnation in a subject of such profound pedagogical influence.
I consider it therefore well worth-while to make an effort to
break this vicious circle.

Of course a new language should not be developed just for the
sake of novelty; existing languages should be used as a basis
for development wherever they meet the criteria mentioned and do
not impede a systematic structure. In that sense Algol 60 was
used as a basis for Pascal, since it meets the demands with .
respect to teaching to a much higher degree than any other

Page 2

standard language. Thus the principles of structuring, and in
fact the form of expressions, are copied from Algol 60. It was,
however not deemed approriate to adopt Algol 60 as a subset of
Pascal; certain construction principles, particularly those of
declarations, would have been incompatible with those allowing a
natural and convenient representation of the additional features

of Pascal.

The main extensions relative to Algol 60 lie in the domain of
data structuring facilities, since their lack in Algol 60 was
considered as the prime cause for its relatively narrow range of
applicability. The introduction of record and file structures
should make it possible to solve commercial type problems with
Pascal, or at least to employ it succesfully to demonstrate

such problems in a programming course.

Pascal/R extends Pascal essentially by the data structure
relation. One of the major design objectives of Pascal/R is
to integrate relation structures and Pascal data and control
structures as closely as possible. This effort seems worth-
while for two reasons.

Firstly, many programming tasks may benefit directly from the
new data structuring facility, from its general content-based
selection and test mechanisms, and from its set-like
operators. Secondly, database models concentrate on a rather
limited set of facilities for the structuring, querying, and
altering of data. Therefore, in practical applications, the
task of data transformation, validation, selection etc. has
to be performed partly by the operations on the database and
partly by the operations of application programs.

The Pascal/R system is considered to be a framework within
which the essential concepts of programming languages and
database models can be taught and studied with respect to
their interaction, trade-off, and implementation effort.

2. Summary of the language

- o . G e T W G T e e e

An algorithm or computer program consists of two essential
parts, a description of actions which are to be performed, and a
description of the data, which are manipulated by these actions.
Actions are described by so-called statements, and data are
described by so-called declarations and definitions.

The data are represented by values of variables. Every variable
occurring in a statement must be introduced by a variable
declaration which associates an identifier and a data type with

that variable. The data type essentially defines the set of
values which may be assumed by that variable. A data type may in
Pascal be either directly described in the variable declaration,
or it may be referenced by a type identifier, in which case this
identifier must be described by an explicit type definition.

Page 3

The basic data types are the scalar types. Their definition
indicates an ordered set of values, i.e. introduces identifiers
standing for each value in the set. Apart from the definable
scalar types, there exist four standard basic types: Boolean,
integer, char. and real. Except for the type Boolean, their

vaiues are not denoted by identifiers, but instead by numbers
and quotations respectively. These are syntactically distinct
from indentifiers. The set of values of type char is the
character set available on a particular installation.

A type may also be defined as a subrange of a scalar type by
indicating the smallest and the largest value of the subrange.

Structured types are defined by describing the types of their

components and by 1nd10at1ng a structuring method. The various

structuring methods differ in the selection mechanism serving to
select the components of a variable of the structured type. In
Pascal, there are four basic structuring methods available:
array structure, record structure, set structure, and file

structure.

Pascal/R provides two additional structuring methods:
relation structure and database structure.

In an array structure, all components are of the same type. A
component is selected by an array selector, or computable index,
whose type is indicated in the array type definition and which
must be scalar. It is usually a programmer-defined scalar type,
or a subrange of the type integer. Given a value of the index
type, an array selector yields a value of the component type
Every array variable can therefore be regarded as a mapping of
the index type onto the component type. The time needed for a
selection does not depend on the value of the selector (index).
The array structure is therefore called a random-access

structure.

In a record structure, the components (called flelds) are not
necessarily of the same type. In order that the type of a
selected component be evident from the program text (without
executing the program), a record selector is not a computable
value, but instead is an identifier uniquely denoting the
component to be selected. These component identifiers are
declared in the record type definition. Again, the time needed
to access a selected component does not depend on the selector,

and the record is therefore also a random-access structure.

A record type may be specified as consisting of several
variants. This implies that different variables, although said

tTo be of the same type, may assume structures which differ in a

certain manner. The difference may consist of a different number
and different types of components. The variant which is assumed
by the current value of a record variable may be indicated by a
component field which is common to all variants and is called
the” tag field. Usually, the part common to all variants will
consist of several components, including the tag field.

Page 4

A set structure defines the set of values which is the powerset
of its base type, i.e. the set of all subsets of values of the
base type. The base type must be a scalar type, and will usually
be a programmer-defined scalar type or a subrange of the type

integer.

A file structure is a sequence of components of the same type. A
natural ordering of the components is defined through the
sequence. At any instance, only one component is directly
accessible. The other components are made accessible by
progressing sequentially through the file. A file is generated
by sequentially appending components at its end. Consequently,
the file type definition does not determine the number of

components.

In a relation structure all elements are of the same

type. A relation element is uniquely identified by the list
of values of its key components; the list of key component
identifiers is given in the relation type definition. Every
relation variable can therefore be regarded as a partial
mapping of the key component types into the remaining
relation component types. The set of values for which this
mapping is defined can expand and shrink by insertion and
deletion of relation elements; the mapping can be redefined
by replacing relation elements by elements with identical key
values. A general selection mechanism yields all the relation
elements that fulfill a given predicate.

In a database structure, the components are relations of
possibly different type. A database selector is an
identifier uniquely denoting the component to be selected.
These component identifiers are declared in the database
type definition.

Variables declared in explicit declarations are called static.
The declaration associates an identifier with the variable which
is used to refer to the variable. In contrast, variables may be
generated by an executable statement. Such a dynamic generation
yields a so-called pointer (a substitute for an explicit
identifier) which subsequently serves to refer to the variable.
This pointer may be assigned to other variables, namely
variables of type pointer. Every pointer variable may assume
values pointing to variables of the same type T only, and it is
said to be bound to this type T. It may, however, also assume
the value nil, which points to no variable. Because pointer
variables may also occur as components of structured variables,
which are themselves dynamically generated, the use of pointers
permits the representation of finite graphs in full generality.

The most fundamental statement is the assignment statement. It
specifies that a newly computed value be assigned to a variable
(or components of a variable). The value is obtained by
evaluating an expression. Expressions consist of variables,
constants, sets, records, relations, operators and functions
operating on the denoted quantities and producing new values.
Variables, constants, and functions are either declared in the
program or are standard entities. Pascal defines a fixed set of

Page 5

operators, each of which can be regarded as describing a mapping
from the operand types into the result type. The set of operators
is subdivided into groups of »

1. arithmetic operators of addition, subtraction, sign
inversion, multiplication, division, and computing the
remainder.

2. Boolean operators of negation, union (or), and conjunction
{and).

3. set operators of union, intersection, and set difference.

4, relational operators of equality, inequality, ordering, set
membership and set inclusion. The results of relational
operations are of type Boolean.

Pascal/R defines existential and universal quantifiers.
Quantified expressions consist of quantifiers, variables,
relations, and Boolean expressions; the value of a quantified
expression is of type Boolean.

The procedure statement causes the execution of the designated
procedure (see below). Assignment and procedure statements are
the components or building blocks of structured statements,
which specify sequential, selective, or repeated execution of
their components. Sequential execution of statements is
specified by the compound statement, conditional or selective
execution by the if statement and the case statement, and
repeated execution by the repeat statement, the while statement,
and the for statement. The if statement serves to make the
execution of a statement dependent on the value of a Boolean
expression, and the case statement allows for the selection
among many statements according to the value of a selector. The
for statement is used when the number of iterations is known
beforehand, and the repeat and while statements are used
otherwise.

L statement can be given a name (identifier), and be referenced
through that identifier. The statement is then called a
procedure, and its declaration a procedure declaration. Such a
declaration may additionally contain a set of variable
declarations, type definitions and further procedure
declarations. The variables, types and procedures thus declared
can be referenced only within the procedure itself, and are
therefore called local to the procedure. Their identifiers have
significance only within the program text which constitutes the
procedure declaration and which is called the scope or these
identifiers. Since procedure may be declared local to other
procedures, scopes may be nested. Entities which are declared in
the main program, i.e. not local to some procedure, are called
global. A procedure has a fixed number of parameters, each of
which is denoted within the procedure by an identifier called
the formal parameter. Upon an activation of the procedure
statement, an actual quantity has to be indicated for each
parameter which can be referenced from within the procedure
through the formal parameter. This quantity is called the actual

Page 6

parameter. There are four kinds of parameters: value

parameters, variable parameters, procedure and function
parameters. In the first case, the actual parameter is an
expression which is evaluated once. The formal parameter
represents a local variable to which the result of this
evaluation is assigned before the execution of the procedure (or
function). In the case of a variable parameter, the actual
parameter is a variable and the formal parameter stands for this
variable. Possible indices are evaluated before execution of the
procedure (or function). In the case of procedure or function
parameters, the actual parameter is a procedure or function

identifier.

functions are declared analogously to procedures. The only
difference lies in the fact that a function yields a result
which is confined to a scalar or pointer type and must be
specified in the function declaration. Functions may therefore
be used as constituents of expressions. In order to eliminate
side-effects, assignments to non-local variables should be
avoided within function declarations.

3. Notation, terminology, and vocabulary

According to traditional Backus-Naur form, syntactic constructs
are denoted by English words enclosed between the angular
brackets < and >. These words also describe the nature or
meaning of the construct, and are used in the accompanying
description of semantics. Possible repetition of a construct is
indicated by enclosing the construct within metabrackets { and
}. The symbol <empty> denotes the null sequence of symbols.

The basic vocabulary of Pascal consists of basic symbols
classified into letters, digits, and special symbols.

{letter> ::= AIBICIDIEIFIGIHII|JIKILIMINJOIPIQIRISITIUIV]
WiXiYiZjajbicidieifigihiiijikiliminioipigir,
sitiuiviwixiyiz

<digit> ::= 011121314151617:819

{special symbol> Pz

+ 0 = ¥ o0 = K> L > K= o= 0 O)
Ly Y v vy oe= 0 0, b s T div

mod | nil | in | or | and | not | if | then | else |
case | of | repeat | until | while | do | for | to i
downto | begin | end | with | goto | const | var |
type | array | record | set | file | function |
procedure | label | packed | program ;|

t+ | 1~ | :& | all | some | each | relation | database

The construct

{<any sequence of symbols not containing"}"> }
may be inserted between any two identifiers, numbers (cf. 4), or
special symbols. It is called a comment and may be removed from
the program text without altering its meaning. The symbols { and

Page 7

} do not occur otherwise in the language, and when appearing in
syntactic descriptions they are meta-symbols like | and ::=

The symbol pairs (* and *) are used as synonyms for { and }.

4., Identifiers, Numbers, and Strings

—— P W e e M S M W GG D TR WS W G G R N LR RS e e W

Identifiers serve to denote constants, types, variables,
procedures and functions. Their association must be unique
within their scope of validity, i.e. within the procedure or
function in which they are declared (cf. 10. and 11.).
<identifier> ::= <letter>{<letter or digitd>}
<letter or digit> ::= <letter> | <ddigit>

The usual decimal notation is used for numbers, which are the
constants or the data types integer and real (see 6.1.2.) The
letter E preceding the scale factor is pronounced as "times 10
to the power of",

<digit sequence> ::= <digitd>{<digit>}

<unsigned integer> ::= <digit sequence>

<unsigned real> ::= <unsigned integer>.<digit sequence> |
<unsigned integer>.<digit sequence>E<scale factor> |
<unsigned integer> E <scale factor>

<unsigned number> ::= <unsigned integer> | <unsigned real>

<scale factor> ::z <unsignhed integer> |

<{sign><unsigned integer>

<sign> ::= + | =
Examples:
1 100 0.1 5E-3 87.35E+8

Sequences of characters enclosed by quote marks are called
strings. Strings consisting of a single character are the
constants of the standard type char (see 6.1.2.). Strings
consisting of n (>1) enclosed characters are the constants of
the types (see 6.2.1.)

packed array [1..n] of char

Note: If the string is to contain a gquote mark, then this quote
mark is to be written twice.

{string> ::= '<character>{<character>}'
Examples:

tAY .0 LI I I
A ;

'Pascal’ '"THIS IS A STRING'

Page 8

5. Constant definitions

- —— . A S - - W G S o =

A constant definition introduces an identifier as a synonym to a
constant.

<constant identifier> ::= <identifier>

<constant> ::= <unsigned number> | <sign><unsigned number> |
{constant identifier> | <sign><constant identifier> |
{string>

<constant definition> ::= <identifier> = <constant>

6. Data type definitions

A data type determines the set of values which variables of that
type may assume and associates an identifier with the type.

<type> ::= <simple type> | <structured type> | <pointer type>
<type definition> ::= <identifier> = <type> ‘

6.1. Simple types

<simple type> ::= <scalar type> | <subrange type> |
<type identifier>
<type identifier> ::= <identifier>

6.1.1. Scalar types

A scalar type defines an ordered set of values by enumeration of
the identifiers which denote these wvalues.

<scalar type> ::= (<identifier> {,<identifier>})
Examples:
(red, orange, yellow, green, blue)
(club, diamond, heart, spade)
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)
Functions applying to all scalar types (except real) are:

suUccC the succeeding value (in the enumeration)
pred the preceding value (in the enumeration)

6.1.2. Standard types

The following types are standard in Pascal:

integer The values are a subset of the whole numbers
defined by individual implementations. Its values
are the integers (see U.).

real Its values are a subset of the real numbers
depending on the particular implementation. The

Page 9

values are denoted by real numbers (see 4.).

Boolean Its values are the truth values denoted by the
identifiers true and false.

char Its values are a set of characters determined by
particular implementations. They are denoted by
the characters themselves enclosed within quotes.

6.1.3. Subrange types

A type may be defined as a subrange of another scalar type by
indication of the least and the largest value in the subrange.
The first constant specifies the lower bound, and must not be
greater than the upper bound.

<{subrange type> ::= <constant> .. <constant>
Examples: 1..100
-10 .. +10

Monday .. Friday

6.2. Structured types

A structured type is characterised by the type(s) of its
components and by its structuring method. Moreover, a structured
type definition may contain an indication of the preferred data
representation. If a definition is prefixed with the symbol
packed, this has in general no effect on the meaning of a
program (for a restriction see 9.1.2.); but it is a hint to the
compiler that storage should be economized even at the price of
some loss in efficiency of access, and even if this may expand
the code necessary for expressing access to components of the
structure.
{structured type> ::= <unpacked structured type> |
packed <unpacked structured type>
<unpacked structured type> ::= <array type>
{record type> | <set type> | <file type>
<relation type> | <database type>

6.2.1. Array types

An array type is a structure consisting of a fixed number of
components which are all of the same type, called the component
type. The elements of the array are designated by indices,
values belonging to the so-called index type. The array type
definition specifies the component type as well as the index

type.

11

array [<index type> {,<index type>}] of
{component type>

<{index type> ::= <simple type>

<component type> ::= <type>

<array type>

Page

If n index types are specified, the array type is called
n-dimensional, and a component is designated by n indices.

Examples: array [1..100] of real
array [1..10,1..20] of 0..99
array [Boolean] of color

6.2.2. Record types

A record type is a structure consisting of a fixed number of
components, possibly of different types. The record type
definition specifies for each component, called a field, its
type and an identifier which denotes it. The scope of these
so-called field identifiers is the record definition itself, and
they are also accessible within a field designator (cf. 7.2.)
referring to a record variable of this type.

A record type may have several variants, in which case a certain
field may be designated as the tag field, whose value indicates
which variant is assumed by the record variable at a given time.
Each variant structure is identified by a case label which is a

constant of the type of the tag field.

{record type>

record <field list> end
<field 1list> '

<fixed part> | <fixed part>;<variant part)> |
{variant part>
<fixed part> <record section> {;<record section>}
{record section> ::=

<field identifier>{,<field identifier>} : <type> | <empty> |
{variant part> ::= case <tag field> <type identifier> of
{variant> {j;<variant>} T

Inn

{variant> ::= <case label list> : (<field 1list>) | <empty>
<case label list> ::= <case label> {,<case label>}

{case label> ::=z <constant>

<tag field> ::= <identifier> : | <empty>

Examples: record day: 1..31;

month: 1.,.12;
year: integer
end

record name, firstname: alfa;
age: 0..99;
married: Boolean

record x,y: real;
area: real;
case s: shape of
triangle: (side: real;
ineclination, anglel, angle2: angle);
rectangle: (sidel, side2: real;
skew, angle3: angle);
circle: (diameter: real)
end

Page

6.2.3. Set types

A set type defines the range of values which is the powerset of
its so-called base type. Base types must not be structured
types. Operators applicable to all set types are:

+ union

- set difference
* intersection
in membership

The set difference x-y is defined as the set of all elements of
X which are not members of y.

set of <base type>

<set type> of
{simple type>

<base type>

6.2.4. File types

A file type definition specifies a structure consisting of a
sequence of components which are all of the same type. The
number of components, called the length of the file, is not
fixed by the file type definition. A file with O components is
called empty.

{file type> ::= file of <type>

Files with component type char are called textfiles, and are a
special case insofar as the component range of values must be
considered as extended by a marker denoting the end of a line.
This marker allows textfiles to be substructured into lines. The
type text is a standard type predeclared as

type text = file of char

h.2.5. Relation types

A relation type definition specifies a structure consisting of
elements of the same type, called the relation element type.
The number of elements, called the size of the relation, is not
fixed by the relation type definition. A relation with zero
elements is called empty. The elements of a relation are
identified by the component values of the relation key. The

relation type definition specifies the element type as well as the

relation key. There is at most one element in a relation with a
given value for the components specified by the list of key
component identifiers.

<relation type> ::= relation < <relation key> > of

: <relation element type>

<relation key> ::=
<key component identifier> {,<key component identifier>}

<key component identifier> ::= <identifier>

(relation element type> ::= <type>

[In the current version of Pascal/R relation element types are

11

Page 12

restricted to

{relation element type> ::=
record <element section> {;<element section>} end

Zrelation element type identifier>
<element section> ::=
<component identifier> {,<{component identifier>} :
{component type identifier> | <empty>
<component identifier> ::= <identifier>
{component type identifier> ::= <type identifier>
¢relation element type identifier> ::= <type identifier>

The type associated with the component type identifier must be a
scalar type, subrange type, standard type or a "string" type
(packed array [1..n] of char). 1

Examples: relation <itemname> of
record form: shape;
code: color;
itemname: alfa;
price: integer
end

e

6.2.6. Database types

A database type is a structure consisting of a fixed number of
relation type components, possibly of different type. The database
type definition specifies for each component its type and an
identifier which denotes it. The scope of these so-called database
component identifiers is the database definition itself, and they
are also accessible within a database component designator (cf.
7.2.) referring to a database variable of this type.

<database type> ::=
database <database section> {;<database section>} end
<database section> ::= <database component identifier>
{,<database component identifier>}
<database component type> | <empty>
{database component type> ::= <relation type> | <type identifier>

6.3. Pointer types

Variables which are declared in a program (see T.) are
accessible by their identifiers. They exist during the entire
execution process of the procedure (scope) to which the variable
is local, and these variables are therefore called static (or
statically allocated). In contrast, variables may also be
generated dynamically, i.e. without any correlation to the
structure of the program. These dynamic variables are generated
by the standard procedure new (see 10.1.2.); since they do not
occur in an explicit variable declaration, they cannot be
referred to by a name. Instead, access is achieved via a
so-called pointer value which is provided upon generation of the
dynamic variable. A pointer type thus consists of an unbounded

Page

set of values pointing to elements of the same type. No
operations are defined on pointers except the assignment and the
test for equality.

The pointer value nil belongs to every pointer type; it points

e

to no element at all.
{pointer type> ::= T <type identifier>

Examples of type definition:

color = (red, yellow, green, blue)
sex = (male, female)
text = file of char
shape = (triangle, rectangle, circle)
card = array [1..80] of char
alfa = packed array [T..10] of char
complex = record re,im: real end
person - record name, firstname: alfa;
T age: integer;
married: Boolean;
father, child, sibling: Tperson;
case s: sex of
male: (enIlisted, bold: Boolean);
female: (pregnant: Boolean;
size: array [1..31 of integer)
end
item = record form: shape;
code: color;
itemname: alfa;
price: integer
end
company = record companyname, city: alfa;
T phonenumber: integer
end
items = relation <itemname> of item
companies = relation {companyname,city> of company
business = database

parts: items;
suppliers: companies;

13

orders: relation <itemname,companyname,city> of
record companyname,city,itemname: alfa;

quantity: integer
end
end

7. Declarations and denotations of variables

————_—--———-——————_—_——...--——-———_——.—_.—--—_—-_-

Variable declarations consist of a list of identifiers denoting
the new variables, followed by their type.

<variable declaration> ::= <identifier>{,<identifier>} : <type>

Every declaration of a file variable f with components of type T
implies the additional declaration of a so-called buffer

Page 14

Xariable of type T. This buffer variable is denoted by f7 and
serves to append components to the file during generation and
to access the file during inspection (see 7.2.3. and 10.1.1.).

Examples:
X,y,z: real
u,v: complex
i,j: integer
k: 0..9
p,q: Boolean
operator: (plus, minus, times)
a: array [0..63] of real
b: array [color, Boolean] of complex
c: color
f: file of char
hueT, hueZ: set of color
pl, p2:Tperson
thispart: item
oldparts, newparts: items
mybusiness: business

Denotations of variables either designate an entire variable, a
component of a variable, or a variable referenced by a pointer
(see 6.3.). Variables occuring in examples in subsequent
chapters are assumed to be declared as indicated above.

(variable> ::= <entire variable> | {component variable> |
{referenced variable>

7.1. Entire variables

An entire variable is denoted by its identifier.

<entire variable> ::= <variable identifier>
<variable identifier> i(:= <ijdentifier>

7.2. Component variables

A component of a variable 1is denoted by the variable followed by
a selector specifying the component. The form of the selector
depends on the structuring type of the variable.

<component variable> ::= <indexed variable> |
<field designator> | <file buffer> i
<database component designator> | <selected variable>

7.2.1.Indexed variables

A component of an n-dimensional array variable is denoted by the
variable followed by n index expressions.

<indexed variable> ::=
<array variable> [<expression> {,(expression>}]
<array variable> ::= <variable>

Page 15

The types of the index expressions must correspond with the
index types declared in the definition of the array type.

Examples:
al12]
ali+j]
blred,truel

7.2.2. Field designators

A component of a record variable is denoted by the record
variable followed by the field identifier of the component.

<record variable>.<field identifier>
{variable>
<identifier>

<field designator>
<record variable>
{field identifier>

A component of a database variable is denoted by the database
variable followed by the database component identifier.

{database component designator> ::=

<database variable>.<database component identifier>
{database variable> ::= <identifier>
<database component identifier> ::= <identifier>

Examples:
u.re
blred,truel.im
p27.size
mybusiness.parts

7.2.3. File buffers

At any time, only the one component determined by the current
file position (read/write head) is directly accessible. This
component is called the current file component and is
represented by the file's buffer variable.

<file buffer> ::= <file variable>f
Kfile variable> ::= <variable>

7.2.4, Selected variables

An element of a relation variable is denoted by the variable
followed by n selection expressions.

{selected variable> ::=
{relation variable> [<expression> {,<expression>}]
{relation variable> ::= <variable>

The types of the selection expressions must correspond with the
types of the key components identified by the definition of the
relation type.

Page

The type of a selected variable is defined by the relation
element type with the additional constraint that the values of
the key components are restricted to the values of the
selection expressions. This implies that the values of the key
components of a selected variable can not be altered. The value
of a selected variable is void (see 8.) if there is no relation
element with key values equal to the selection expressions.

Examples:
newparts['cardreader']
mybusiness.orders['tapereader',pli.name,'hamburg ']

7.3. Referenced variables

{referenced variables> ::= <pointer variable>|
{pointer variable> ::= <variable>

If p is a pointer variable which is bound to a type T, p
denotes that variable and its pointer value, whereas p7 denotes
the variable of type T referenced by p. '

Examples:
p17.father
p1{.siblingt.child

8. Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operators and
operands, i.e. variables, constants, and functions.

The rules of composition specify operator precedences according
to four classes of operators. The operators not, some and

all have the highest precedence, followed by the so-called
multiplying operators, then the so-called adding operators, and
finally, with the lowest precedence, the relational operators.
Sequences of operators of the same precedence are executed from
left to right. The rules of precedences are reflected by the
following syntax:

<unsigned constant> ::=z <unsigned number> | <string> |

<constant identifier> | nil
{factor> ::= <variable> | <unsigned constant> | <function
designator> | <set> | <record> | <relation> |
<quantified expression> | (<expression>) |
not <factor>
<term> ::= <factor> | <term><multiplying operator><factor>
<simple expression> ::= <term> |
<simple expression> <adding operator><term> |
{sign><term>
i

<expression> ::= <simple expression> |

16

Page 17

<simple expression><relational operator><simple expression>

Elements which are members of a set must all be of the same type,
which is the base type of the set.

<set> ::z [<set element list>]

{set element list> ::z <set element> {,<{set element>} | <empty>
<set element> ::= <expression> | <construction>

{construction> ::= <expression> .. <expression>

[] denotes the empty set, and [x..y] denotes the set of all values
in the interval x..y.

{record> ::= < <record component list> >
{record component list> ::= <expression> {,<expression>} | <empty>

< > denotes the void record.

Elements which are members of a relation must all be of the same
type, which is the relation element type. Any set of component
designators such that every two elements of a relation expression
differ by the value of the designated components defines a key of
a relation expression.

<relation> ::= [<relation element list>]

{relation element list> ::=

<relation element> {,<relation element>} | <empty>
<relation element> ::= <expression> | <selection> |

<component selection>

(selection> ::= <element denotation list> : <selection expression>
<component selection> ::= <component list> of <selection>
<element denotation list> ::=

<element denotation> {,<element denotation>}
<element denotation> ::=

each <element variable> in <relation expression»
<component list> ::=

< <component designator> {,<component designator>} >
<component designator> ::=

<element variable>.<component identifier>
<element variable> ::= <variable identifier>

<variable identifier> ::= <identifier>
{selection expression> ::= <Boolean expression>
{relation expression> ::= <expression>
{Boolean expression> ::=z <expression>

[] denotes the empty relation, and [each fv in r : e] denotes

the relation consisting of each element of the relation variable r,
that makes the selection expression e, true (see 9.2.3.3.).

The element variable, e.g. fv, in an element denotation is called a
free element variable. The scope of a free element variable is

the element of the relation element list the variable is defined
in; its type is the element type of the subsequent relation
expression.

The value of a relation expression is not altered if the void
record, < >, is included in a relation element list:
[...,reci,< >,reck,...] = [...,reci,reck,...].

This definition implies:

Examples:

Relations:

Factors:

Terms:

Simple expressions:

Lxpressions:

g.1.

Operators

Page 18

[<>1=11].

[thispart]
[each p in oldparts: p.form =
[each o In mybusiness.orders:
some p in newparts
7 To.itemname =
[each p1 in oldparts:
pl.code = thispart.code,
each p2 in newparts: truel
[To.itemname, o.quantity> of each o in
mybusiness.orders: o.quantity > j 1

circle]

p.itemname)]

X
15

(x+y+2)

sin (x+y)

[red,c,green]

[1,5,10..19,23]

not p

Some p in oldparts (p.price < T)
{circle,green,'bolt ',

x¥y

i/ (1-1)

p or q

(xX=y) and (y < z)

X + Yy
-X
huel1 + hue?

oldparts <= mybusiness.parts
newparts['cardreader'] in mybusiness.parts

if both operands of the arithmetic operators of addition,
subtraction and multiplication are of type integer (or a
subrange thereof), then result is of type integer. If one of
the operands is of type real, then the result is also of type

real.

Page 19

8.1.1. The operator not and the quantifiers some, all

The operator not denotes negation of its Boolean operand.

<quantified expression> ::= <quantifier> <element variable>
in <relation expression> <predicate>
<quantifier> ::= some | all
<predicate> ::= (<selection expression>) |
<quantified expression>

(see 9.2.3.3.)

iquantifier) operation itype of result]
P
| some | logical "existential quantification" | Boolean |
| i (see 9.2.3.3.) i ;
1 1 i [}
{ | 1 I
1 al i logical "universal quantification" i Boolean '
] [] [} H
: | \ |
1 i i |

Element variables in quantified expressions are called bound
element variables. The scope of a bound element variable is the

subsequent predicate, its type is the element type of the
subsequent relation expression. Components of bound element
variables and of free element variables are of identical type if
they are declared by the same component type identifier.

8.1.2. Multiplying operators

<multiplying opefator> 1:= ¥ | / | div | mod | and

ioperator| operation | type of operands | type of result]
R
| ¥ i multiplication| real, integer | real, integer |
i iset intersection, any set type T v T |
| |] [}]
$ ' I i]
v/ y division , real, integer i real i
1 1 [} 1 1
i i t 1 I
y div | division with | integer i integer |
! i truncation ! ; :
1 1] 1 [}
] i | 1 i
1 mod i modulus | integer | integer d
1 - 1 i [}]
| ! i 1 1
i and } logical "and" | Boolean i Boolean |
i] [} [} 1
i ! i t i

— - i - - W S e S WP S e G W R W WA G e N A e M GM e T G G S I e W TED G A A G MR M G G S G e D T D A R e e W e

~that false <

Page 20

8.1.3. Adding operators
<adding operator> ::= + | - | or

loperator)| operation | type of operands | type of result)
|+ | addition i integer, real i integer, real)
i i set union | any set type T i T !
1] t ' 1
1 [| | |
|- | subtraction { integer, real i integer, real|
| i set difference | any set type T A § |
1 | 1]]
I | f | i
i or i logical "or" i Boolean i Boolean |
| i | i |
When used as operators with one operand only, - denotes sign
inversion, and + denotes the identity operation.
8.1.4, Relational operators

<relational operator> ::= = | <> | < | <= | >= | > | in
{ operator | type of operands i type of result |

= <

< 2 any scalar or subrange type Boolean

<=z D=

any scalar or subrange type

and its set type respectively,
or any relation element type
and its relation type
respectively

]
]
|
|
]
)
]
|
t
i
Boolean i
]
]
|
]
]
]
t
t
]
|

Notice that all scalar types define ordered sets of values.

The operators <>, <=, >= stand for unequal,
greater or equal respectively.

less or equal,

and

The operators <=z and >= may also be used for comparing values of

set type, and then denote set inclusion.

If p and q are Boolean expressions, p = q denotes their

equivalence,
true)

and p <= q denotes implication of q by p.

(Note

Page 21

The relational operators =, <>, <, <=, », 2= may also be used to
compare (packed) arrays with components of type char (strings),
and then denote alphabetical ordering according to the collating
sequence of the underlying set of characters.

The relational operators =, <>, <, <=, 2, >= may also be used to
compare values of relation type, and they denote relation equality
or inclusion. The two relation expressions compared must have
identical relation element types. Two relation element types are
the same if corresponding components are defined by the same

type identifier.

The relational operator, in, may also be used to test whether the
value of a selected variable, riek], is void or not:

(rlek] = <>) = not (rlek]l inr).

This definition implies: (<> inr) = false.

The value of the expression
r1 <= r2

where r1, r2 are relation expressions is equal to the value of
the quantified expression

all bl in r1 some b2 in r2 (bl = b2).

8.2. Function designators

A function designator specifies the activation of a function. It
consists of the identifier designating the function and a list
of actual parameters. The parameters are variables, expressions,
procedures, and functions, and are substituted for the
corresponding formal parameters (cf. 9.1.2., 10., and 11.).

<function designator> ::= <function identifier> |
<function identifier>(<actual parameter>{,<actual parameter>})
(function identifier> ::= <identifier>
Examples: Sum(a,100)
GCD(147,k)
sin(x+y)
eof(f)

ord(f7T)

Page 22

9. Statements

- - - - - -—

Statements denote algorithmic actions, and are said to be
executable. They may be prefixed by a label which can be

referenced by goto statements.

{statement>::=<unlabelled statement> |
<label>:<unlabelled statement>
<unlabelled statement> ::z <simple statement) i
<{structured statement>
<label> ::= <unsigned integer>

9.1. Simple statements

A simple statement is a statement of which no part constitutes
another statement. The empty statement consists of no symbols
and denotes no action.

{simple statement> ::= <assignment statement>
{procedure statement> | <goto statement>
{empty statement>

{empty statement> ::z <empty>

9.1.1. Assignment statements

The assignment statement serves to replace the current value of
a variable by a new value specified by means of an expression.
{assignment statement> ::= <variabled> := {expression> |
{function identifier> := <expression> |
{relation variable> <relation update operator>
{relation expression>

<relation update operator> ::= :4 ! 1= ! :&

Assignment statements that update a relation variable r, by a
relation expression re, using one of the relation update operators,

'+, i-, &, are equivalent to assignment statements using the
assignment operator, :=, and a more complicated relation
expression.

relation insertion:

r i+ re is equivalent to

r

[each fr in r : true, each fe in re
not some br in r (fe.key = br.key)]

relation deletion:
r - re i1s equivalent to

r

[each fr in r : not some be in re (fr = be)]

Page 23

relation replacement:

r :& re is equivalent to

[each fr in r : not some be in re (fr.key = be.key),
‘each fe 1n re : some br inr “(fe.key = br.key)]

r

Assignment statements that update a relation variable, r, by a one
element relation expression using one of the relation update
operators, :+, :-, :&, may be expressed by means of assignment
statements that replace the value of a selected variable, rlek]:

relation insertion:
r :+ [<el,...,ek,...,en>] is equivalent to

if not rlekl in rel
then rlek] := <el,...,ek,...en>

relation deletion:

r :- [<el,...,ek,...,en>] is equivalent to

if rlek] in rel
then rlek] := < >

relation replacement:

r :& [<el,...,ekK,...,en>] is equivalent to

if rlek] in rel
then rTek] := <el,...,ek,...en>

The void record, < >, can be assigned to any relation element.

The variable (or the function) and the expression must be of
identical type, with the following exceptions being permitted:

1. the type of the variable is real, and the type of the
expression is integer or a subrange thereof.

2. the ftype of the expression is a subrange of the type of the
variable, or vice-versa.

A relation variable and a relation expression are of identical type
if the relation element types are the same and if there is a key of
the relation expression designating the same components as the key

of the relation variable.

Examples: X 1= y+z
p := (1<=1) and (i<100)
i 1= sqgr(k) - (i¥*J)
huel := [blue,succ(c)]
oldparts{ 'cardreader'] := < >
newparts := [each p in oldparts: p.price > k]
newparts :+ [<circle,red,'screw 'L,T7>]
newparts :- [each p in oldparts: p.form <> circle]
oldparts := []

Page 24

mybusiness.parts :& [each p in newparts: true,

each p in oldparts: p.price = k]

9.1.2. Procedure statements

A procedure statement serves to execute the procedure denoted by
the procedure identifier. The procedure statement may contain a
list of actual parameters which are substituted in place of
their corresponding formal parameters defined in the procedure
declaration (cf. 10). The correspondence is established by the
positions of the parameters in the lists of actual and formal
parameters respectively. There exist four kinds of parameters:
so-called value parameters, variable parameters, procedure
parameters (the actual parameter is a procedure identifier), and
function parameters (the actual parameter is a function
identifier).

In the case of a value parameter, the actual parameter must be
an expression (of which a variable is a simple case). The
corresponding formal parameter represents a local variable of
the called procedure, and the current value of the expression is
initially assigned to this variable. In the case of a variable
parameter, the actual parameter must be a variable, and the
corresponding formal parameter represents this actual variable
during the entire execution of the procedure. If this variable
is a component of an array, its index is evaluated when the
procedure is called. A variable parameter must be used whenever
the parameter represents a result of the procedure.

If a variable parameter is a relation the types of the variables
serving as actual and formal parameter must be identical._Two
relation variables are of identical type if the relation element
types are identical and if the key lists -designate the same
components in the same order. - '

Components of a packed structure must not appear as actual
variable parameters.
{procedure statements> ::= <procedure identifier> !
{procedure identifier> (<actual parameter>
{,<actual parameter>})

{procedure identifier> ::= <identifier>
Cactual parameter> ::= <expression> | <variable> !

{procedure identifier> | <function identifier)

Examples: next

Transpose(a,n,m)
Bisect(fect,-1.0,+1.0,x)

9.17.3. Goto statement

A goto statement serves to indicate that further processing
should continue at another part of the program text, namely at
the place of the label.

Page 25

<goto statement> ::= goto <label>

The following restrictions hold concerning the applicability of
labels:

1. The scope of a label is the procedure within which it is
defined. It is therefore not possible to jump into a

procedure.

2. Every label must be specified in a label declaration in the
heading of the procedure in which the label marks a
statement.

9.2. Structured statements

Structured statements are constructs composed of other
statements which have to be executed either in sequence
(compound statement), conditionally (conditional statements), or
repeatedly (repetitive statements).

{structured statements> ::= <compound statement> |
<conditional statement> | <repetitive statement> |
<with statement>

9.2.1. Compound statements

The compound statement specifies that its component statements
are to be executed in the same sequence as they are written. The
symbols begin and end act as statement brackets.

{compound statement> ::z begin <{statement> {;<statement>} end

Example: begin z = x ; x 1=y = 2z end

9.2.2. Conditional statements

4 conditional statement selects for execution a single one of
its component statements.

{conditional statement> ::=
<if statement> | <case statement>

5.2.2.1. If statements

The if statement specifies that a statement be executed only if
a certain condition (Boolean expression) is true. If it is
false, then either no statement is to be executed, or the
statement following the symbol else is to be executed.
<if statement> ::= if <expression> then <{statement> |
if <expression> then <statement> else <statement>

Page

The expression between the symbols if and then must be of type
Boolean.

Note:
The syntactic ambiguity arising from the construct

if <expression-1> then if <expression-2> then <statement-1>
else <statement-2>

is resolved by interpreting the construct as equivalent to
if <expression-1> then
begin if <expression-2> then <statement-1> else {statement-2>
end

Examples:

if x < 1.5 then z := x+y else z := 1.5
if p1 <> nil then pl := pit.father

9,2.2.2. Case statements

The case statement consists of an expression (the selector) and
a list of statements, each being labelled by a constant of the
type of the selector. It specifies that the one statement be
executed whose label is equal to the current value of the
selector.

{case statement> ::= case <expression> of
<case list element> {;<case list element>} end
<case list element> ::= <case label 1list> : <statement> |
<empty>
<case label list> ::= <case label> {,<case label> }
Examples:
case operator of case i of
plus: X := X+Y; T: x = sin(x);
minus: X iz X-Y; 2: x := cos(x);
times: x := x¥y 3: x 1= exp(x);
end b: x := 1In(x)
end

i

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is known
beforehand, i.e. before the repetitions are started, the for
statement is the appropriate construct to express this
situation; otherwise the while or repeat statement should be
used.

<repetitive statement> ::= <while statement> |
{repeat statement> | <for statement>

26

Page .7

9.2.3.1. While statements

<while statement> ::= while <expression> do <statement>
The expression controlling repetition must be of type Boolean.
The statement is repeatedly executed until the expression
becomes false. If its value is false at the beginning, the
statement is not executed at all. The while statement
while B do S

is equivalent to

if B then
Replh iéile B do S
end
Examples:
while ali]l <& x do i := i+1

while i>0 do
begin if odd(i) then z := z ¥x;
T :=z i div

X := sqr(x)
end
while not eof(f) do

begin P({fT); get(T)
end

9.2.3.2. Repeat statements

(repeat statement> ::=
repeat <statement> {;<statement>} until <expression>

The expression controlling repetition must be of type Boolean.
The sequence of statements between the symbols repeat and until
is repeatedly executed (and at least once) until the expression
becomes true. The repeat statement

repeat S until B

is equivalent to

begin S
if not B then
repeat S until B

end
Examples:

repeat k = i mod j;
i = J;

Page

j =k
until j = O

repeat P(f7); get(f)
until eof(f)

9.2.3.3. For statements

The for statement indicates that a statement is to be repeatedly
executed while a progression of values is assigned to a variable
which is called the control variable of the for statement.

{for statement> ::=

for <control section> do <{statement>
{control section> ::=

<control variabled> := <for list> | <selection>
i

<for list> ::= <initial value> to <final value> ;|
<initial value> downto <final value>

<control variable> ::= <identifier>
<initial value> ::= <expression>
<final value> ::= <expression>

The control variable, the initial value, and the final value
must be of the same scalar type (or subrange thereof), and must
not be altered by the repeated statement. They cannot be of type

real.
If the control section is given by a selection the free element

variables are called control element variables. The scope of a
control element variable is the subsequent statement. The values
of the key components of the relations denoted in the selection
must not be altered by the repeated statement.

A for statement of the form

for v := el to e2 do S
is equivalent to the sequence of statements

Q t=z el; S; v := suce(v); S; ... ; v = €25 S
and a for statement of the form

for v :=z el downto e2 do S
is equivalent to the statement

v := el; S; v 1= pred(S); S; ... ; v = e2; S

A for statement of the form

for each ¢ in r : true do S

is equivalent to & sequence of statements

o

¢ := el; S; ¢ 1= €2; S; ... ; ¢ = en; S

28

Page 29

where el, e2, ..., en are the elements of the relation r in a
system defined order.

A for statement of the form
for each ¢ inr : e do S
is equivalent to the statement
for each ¢ in r : true do if e then S

A for statement of the form

o,
(o}
(2]

for each ¢? in ri1,each ¢2 in r2,...,each cn in rn : e

is equivalent to the statement

for each ¢1 in ri1 : true do
“for each ¢2 in r2 : true do

for each ¢n in rn : e do S

Examples:

1
N
ct
o]
(o))
W
[o
o]

for i if alil) > max then max := alil

for i

Tor J :

begin x
for k : to
CTi,jl := x

end

(1]
ni ——

b
ton do x := x+A[i,k]*B(k,j];

for ¢ := red to blue do Q(c)

for each p in newparts : p.code = red do
if p.price < min then min := p.price

The value of the predicate
some b in r(e)

is equal to the value of a Boolean variable, vp, computed by
the statement sequence

vp := false;
for each c in r : true do vp := vp or e

where e is a selection expression possibly depending on the
element control variable ¢, that is associated with the
relation variable r.
Analogously, the predicate

all b in r(e)

corresponds to the statement sequence

Page 730

vp = true;
for each ¢ in r : true do vp := vp and e.

The value of the relation expression
[each f inr : e]

is equal to the value of a relation variable ve, computed by the
statement sequence

ve := [1;
for each ¢ inr : e do ve :+ [c].

Analogously, the relation expression

[each f1 in r1: el, each f2 in r2: e2, ...

each fn in rn: en]
corresponds to the statement sequence
ve := [1;

for each c1 inrl1 : el do ve :+ [c1];
for each ¢2 in r2 : e2 do ve :+ [c2];

for each e¢n in rn : en do ve :+ [cn]

The relation expression

[<ci.r, ck.s, ... cl.t> of
each ¢1 in r1, each c2 in r2,
each cn in rn : e]

corresponds to the statement sequence

ve := []1;
for each ¢l in ri1, each ¢2 in r2,

each cn inrn : e do
ve 1+ [<ci.r,ck.s,... cl.t>]

9.2.4. With statements

<with statement> ::=

with <with variable list> do <statement>
{with variable list> ::= <with variable> {,<with variable>}
<with variable> ::= <record variable> | <database variable>

Within the component statement of the with statement, the
components (fields) of the record variable or the database variable
specified by the with clause can be denoted by their identifier
only, i.e. without preceding them with the denotation of the entire
record or database variable. The with clause effectively opens the
scope containing the component identifiers of the specified record
or database variable, so that the component identifiers may occur
as variable identifiers.

Page 31

Examples:

with date do
zf month =~ T2 then

begin month := 1; year := year + 1
end
else month := month+1

is equivalent to

if date.month = 12 then
begin date.month := 1; date.year := date.year+1
en%

else date.month := date.month+1

with mybusiness,thispart do

if not some o in orders
(o.itemname = itemname)

then parts(itemname] := < >

is equivalent to

if not some o in mybusiness.orders
(o.itemname = thispart.itemname)
then mybusiness.parts{thispart.itemname] := < >

No assignments may be made in the qualified statement to any
elements of the with variable list. However, assignments are
possible to the components of these variables.

10. Procedure declarations

- - - - - e - WD S WD S R U D am e

Procedure declarations serve to define parts of programs and to
associate identifiers with them so that they can be activated by
procedure statements.

{procedure declaration> ::= <procedure heading> <block>
<{block> ::= <label declaration part>
<{constant definition part><type definition part>
{variable declaration part>
{procedure and function declaration part>
{statement part>

The procedure heading specifies the identifier naming the
procedure and the formal paramenter identifiers (if any).

The parameters are either value-, variable-, procedure-, or
function parameters (cf. also 9.1.2.). Procedures and functions
which are used as parameters to other procedures and functions
must have value parameters only.

{procedure heading> ::= procedure <identifier> ; |
procedure <identifier> (<{formal parameter section>
{; <formal parameter section>}) ;

Page 32

{formal parameter section> ::=
{parameter group> |
var <parameter group>
Tunction <parameter group> |
procedure <identifier> {,<identifier>}
{parameter group> ::= <identifier>{,<identifier>}:
{type identifier>

A parameter group without preceding specifier implies that its
constituents are value parameters.

The label declaration part specifies all labels which mark a
statement In the statement part.

t

{label declaration part> ::= <empty>
label <label> {,<label>} ;

The constant definition part contains all constant synonym
definitions local to the procedure.

<constant definition part> ::= <{empty> |
const <constant definition> {;<constant definition>};

The type definition part contains all type definitions which are
local to the procedure declaration.

<type definition part> ::= <empty>
type <type definition> {;<type def1n1t10n> b

The variable declaration part contains all variable declarations
local to the procedure declaration.

{variable declaration part> ::= <empty> |
var {variable declaration> {;<variable declaration>} ;

The procedure and function declaration part contains all
procedure and function declarations local to the procedure

declaration.

{procedure and function declaration part> ::=
{<procedure or function declaration> ;}
{procedure or function declaration> ::=
<procedure declaration> | <function declaration>

The statement part specifies the algorithmic actions to be
executed upon an activation of the procedure by a procedure

statement.

{statement part> ::= <compound statement>

A1l identifiers introduced in the formal parameter part, the
constant definition part, the type definition part, the
variable-, procedure or function declaration parts are local to
the procedure declaration which is called the scope of these
identifiers. They are not known outside their scope. In the case
of local variables, their values are undefined at the beginning
of the statement part.

The use of the procedure identifier in a procedure statement
within its declaration implies recursive execution of the

procedure.
Examples of procedure declarations:

procedure readinteger (var f: text; var x:
var i,j: integer;
begin while £t = ' ' do get(f) i 1= 0;
while £ in ['0'..'9'] do
- begin j := ord(f Y- ord('0"');
i := 10%1 + j;
get(f)

end;
x := 1
end

procedure Bisect(function f: real; a,b: real;

var m: real;
begin {assume f(a) < 0 and f(b) > 0 }
" while abs(a-b) > 1E-10%*abs(a) do
begin m := (a+b)/2.0;
if f(m) <O then a := melsebd

end;

Z = m
end

integer) ;

Page 13-

var z: real);

procedure GCD(m,n: integer; var x,y,z: integer);

var al,a2, bl1,b2,c,d,q,r: integer; {m>=0,

begln {Greatest Common Divisor x of m and n.

Extended Euclid's Algorithm}
at := 0; a2 := 1; bl :=1; b2 := 0,
c :=m; d 1= n;
while d <> 0 do
begin {at*m + "bl1%¥n = d, a2*¥m + b2¥n =

~ ged(c,d) = ged(m,n)}

q := ¢ div d; r := ¢ mod d ;
a2 := a2 - q*a1 b2 := b2 - q¥b1;
¢ :=d;, d 1= r;
r := al; al :=z a2; a2 := r;
r := bl; bl := b2; b2 = r
end;
X = ¢} y = a2; z:= b2
{ x = ged(m,n) = y*m + z¥n }
end
procedure averageprice(parts: items; var avg: integer);
var a: integer;
begin a := 0;
- for each p in parts: true do a := a + p.price;
avg := a div size(parts)

end

Page 34

10.1. Standard procedures

Standard procedures are suposed to be predeclared in every
implementation of Pascal. Any implementation may feature
additional predeclared procedures. Since they are, as all
standard quantities, assumed as declared in a scope surrounding
the program, no conflict arises from a declaration redefining

the same identifier within the program. The standard procedures
are listed and explained below.

10.1.1. File handling procedures

put(f) appends the value of the buffer variable f7 to the
file f. The effect is defined only if prior to
execution the predicate eof(f) is true. eof(f)
remains true, and the valus of f{ becomes undefined.

get(f) advances the current file position (read/write head)
to the next component, and assigns the value of this
component to the buffer variable f{. If no next
component exists, then eof(f) becomes true, and the
value of f1 is not defined. The effect of get(f) is
defined only if eof(f) = false prior to its
execution. (see 11.1.2.)

reset(f) resets the current file position to its beginning
and assigns to the buffer variable f! the value of
the first element of f. eof(f) becomes false, if f
is not empty; otherwise f7 is not defined, and
eof (f) remains true.

rewrite(f) discards the current value of f such that a new file
may be generated, eof(f) becomes true.

Concerning the procedures read, write, readln, writeln, and page
see chapter 12.

10.1.2. Dynamic allocation procedures

new(p) allocates a new variable v and assigns the pointer
to v to the pointer variable p. If the type of v is
a record type with variants, the form

new(p,t1,...,tn) can be used to allocate a variable of the
variant with tag field values t1,...,tn. The tag
field values must be listed contiguously and in the
order of their declaration and must not be changed
during execution.

dispose(p) indicates that storage occupied by the variable p?
is no longer needed. If the second form of new was
used to allocate the variable then

dispose(p,t1,...,tn) with identical tag field values must be
used to indicate that storage occupied by this
variant is no longer needed.

Page 35

10.1.3. Data transfer procedures

Let the variables a and z be declared by

a: array [m..n] of T
z: packed array Tu..v] of T

where n-m >= v-u. Then the statement pack(a,i,z) means
for j := u to v do z[jl := alj~u+i]
and the statement unpack(z,a,i) means
for j := u to v do alj-u+il] := z[j]
where j denotes an auxiliary variable not occurring elsewhere in

the program.

10.1.4. Relation handling procedures

The five relation handling procedures low, next, this, high

and prior select at the most one element from the relation
variable, r, given as the first parameter. If the element exists
it is assigned to the second parameter, relem, which must be a
variable of the element type of the first parameter and eor(r)
becomes false; if the element does not exist eor(r) becomes true
and relem remains unchanged.

low (r, relem) selects the element of the relation variable, r,
which has the lowest key value. The order on key values
is given by the order on the value set underlying the

~ key component type; in case of a composite key a
lexicographic order on the key values is assumed.

next (r, relem) selects the element of the relation variable, r,
which has the key value next highest to the current key
value in the variable relem.

this (r, relem) selects the element of the relation variable, r,
which has the key value equal to the current key value
in the variable relem.

high (r, relem) selects the element of the relation variable, r,
which has the highest key value.

prior (r, relem) selects the element of the relation variable, r,
which has the key value next lowest to the current key
value in the variable relem.

Page 36

11. Function declarations

e . S . GB W TS G Y O e —

Function declarations serve to define parts of the program which
compute a scalar value or a pointer value. Functions are
activated by the evaluation of a function designator (cf. 8.2)
which is a constituent of an expression.

<function declaration> ::= <function heading><block>

The function heading specifies the identifier naming the
function, the formal parameters of the function, and the type of
the function.

{function heading> ::= function <identifier>:<result type>; |
function <identifier> (<formal parameter section>
{;<formal parameter section>}) : <result type> ;

<{result type> ::= <type identifier>

The type of the function must be a scalar, subrange, or pointer
type. Within the function declaration there must be at least one
assignment statement assigning a value to the function
identifier. This assignment determines the result of the
function. Occurrence of the function identifier in a function
designator within its declaration implies recursive execution of

the function.
Examples:
function Sqrt(x: real): real;

var x0,x1: real;
begin x1 := x; {x>1, Newton's method}

repeat x0 := x1; x1 := (x0+ x/x0)%¥0.5
until abs(x1-x0) < eps¥*x1 ;
Sqrt := x0

end

function Max(a: vector; n: integer): real;
var X: real; i: integer;

begin x := al1];
for i := 2 to n do
begin {x = max(alT1],...,ali-1])}
if x < alil] then x := alil]
end
Tx = max(al1],...alnl])}
Max := X
end

function GCD(m,n: integer):integer;
begin if n=0 then GCD := m else GCD := GCD(n,m mod n)

end

Page 37

function Power(x: real; y: integer): real ; {y >= 0}
var w,z: real; i: integer;
begin w = x; z = 1; i 1=z y;
while i > 0 do
begin {z* (w*¥i) = x ** y}
if odd(i) then z :=z%w;
1 := i div 2;
W = sqr(w)
end;
Tz = x¥*#y}
Power := z
end

11.1. Standard functions

Standard functions are supposed to be predeclared in every
implementation of Pascal. Any implementation may feature
additional predeclared functions (ef. also 10.1.).

The standard functions are listed and explained below:

11.1.1. Arithmetic functions

abs(x) computes the absolute value of x. The type of x
must be either real or integer, and the type of
the result is the type of x.

sqr(x) computes x¥¥2, The type of x must be either real
or integer, and the type of the result is the type
of x. :

sin(x)

cos(x)

exp(x) the type of x must be either real or integer, and

In(x) the type of the result is real. -

sqrt(x)

arctan(x)

11.1.2. Boolean functions

odd(x) the type of x must be integer, and the result is
true, if x is odd, and false otherwise.

eof(f) eof (f) indicates, wether the file f is in the
end-of-file status.

eaoln{f) indicates the end of a line in a textfile (see
chapter 12).

eor(r) indicates, wether the relation r is in the
end-of-relation status.

Page 38

11.1.3. Transfer functions

trunc(x) the real value x is truncated to its integral
part.

round(x) the real argument x is rounded to the nearest
integer.

ord(x) X must be of a scalar type (including Boolean and

char), and the result (of type integer) is the
ordinal number of the value x in the set defined
by the type of x.

chr(x) x must be of the type integer, and the result (of type

char) is the character whose ordinal number is x
(if it exists).

11.1.4, Further standard functions

sucec(x) X is of any scalar or subrange type, and the
result is the successor value of x (if it exists).

pred(x) x 1s of any scalar or subrange type, and the
result is the predecessor value of x (if it
exists).

size(re) re is of any relation type and the result is the

actual number of relation elements in re.

12. Input and output

The basis of legible input and output are textfiles (cf. 6.2.4.)
that are passed as program parameters (cf. 13.) to a Pascal
program and in its environment represent some input or output
device such as a terminal, a card reader, or a line printer. In
order to facilitate the handling of textfiles, the four standard
procedures read, write, readln, and writeln are introduced in
addition to the procedures get and put. The textfiles these
standard procedures apply to must not necessarily represent
input/output devices, but can also be local files. The new
procedures are used with a non-standard syntax for their
parameter lists, allowing, among other things, for a variable
number of parameters. Moreover, the parameters must not
necessarily be of type char, but may also be of certain other
types, in which case the data transfer is accompanied by an
implicit data conversion operation. If the first parameter 1is a
file variable, then this is the file to be read or written.
Otherwise, the standard files input and output are automatically
assumed as default values in the cases of reading and writing
respectively. These two files are predeclared as

var input, output: text

Page 39

Textfiles represent a special case among file types insofar as
texts are substructured into lines .by so-called line markers
(ef. 6.2.4.). If, upon reading a textfile f, the file position
is advanced to a line marker, that is past the last character of
a line, then the value of the buffer variable f{ becomes a
blank, and standard function eoln(f) (end of line) yields

the value true. Advancing the file position once more assigns to
f7 the first character of the next line, and eoln(f) yields
false (unless the next line consists of 0 characters). Line
markers, not being elements of type char, can only be generated
by the procedure writeln.

12.1. The procedure read

The following rules hold for the procedure read; f denotes a
textfile and vi...vn denote variables of the types char, integer
(or subrange of integer), or real.

1. read(vl,...,vn) is equivalent to read(input,vil,...,vn)

2. read(f,vl,...,vn) is equivalent to read(f,v1); ... ;
read(f,vn)

3. if v is a variable of type char, then read(f,v) is equivalent
to v 1= fT; get(f)

b, if v is a variable of type integer (or subrange of integer)
or real, then read(f,v) implies the reading from f of a
sequence of characters which form a number according to the
syntax of Pascal (cf. 4.) and the assignment of that number
to v. Preceding blanks and line markers are skipped.

The procedure read can also be used from a file f which

is not a textfile. read(f,x) is in this case equivalent to
X 1= f7; get(f).

i¢.2. The procedure readln

. readln(vl,...,vn) is equivalent to readln(input,vil,...,vn)
2. readln(f,vl,...,vn) is equivalent to
read(f,vi,...,vn); readln(f)

readln(f) is equivalent to

(V]

while not eoln(f) do get(f);
get(f)

Readln is used to read and subsequently skip to the beginning
of the next line.

Page 40

12.3. The procedure write

The following rules hold for the procedure write; f denotes
a textfile, pl1,...,pn denote so-called write-parameters, e denotes

an expression, m and n denote expressions of type integer.

1. write(ptl,...,pn) is equivalent to write(output,pt,...,pn)
2. write(f,p1,...,pn) is equivalent to

write(f,p1); ... ; write(f,pn)
3. The write-parameters p have the following forms:
e:m e:m:n e

e represents the value to be "written" on the file f, and m
and n are so-called field width parameters. If the value e,
which is either a number, a character, a Boolean value, or a
string requires less than m characters for its
representation, then an adequate number of blanks is issued
such that exactly m characters are written. If m is omitted,
an implementation-defined default value will be assumed. The
form with the width parameter n is applicable only if e is of
type real (see rule 6).

4, If e is of type char, then
write(f,e:m) is equivalent to
£fT 1= ' '; put(f); (repeated m-1 times)
ft 1= e ; put(f)
Note: the default value for m is in this case 1.

5. If e is of type integer (or subrange of integer), then the
decimal representation of the number e will be written on the
file f, preceded by an appropriate number of blanks as

specified by m.

6. If e is of type real, a decimal representation of the number
e is written on the file f, preceded by an appropriate number
of blanks as specified by m. If the parameter n is missing
(see rule 3), a floating-point representation consisting of a
coefficient and a scele factor will be chosen. Otherwise a
fixed-point representation with n digits after the decimal
points is obtained.

7. If e is of type Boolean, then the words TRUE or FALSE are
written on the file f, preceded by an appropriate number of
blanks as specified by m.

8. If e is an (packed) array of characters, then the string e is
written on the file f, preceded by an appropriate number of
blanks as specified by m.

The procedure write can also be used to write onto a file f
which is not a textfile. write(f,x) is in this case equivalent
to fT := x; put(f).

Page 41

12.4. The procedure writeln

1. writeln(pl,...,pn) is equivalent to writeln(output,pl,...,pn)

2. writeln(f,p1,...,pn) is equivalent to write(f,p1,...,pn;
writeln(f)

3. writeln(f) appends a line marker (cf. 6.2.4.) to the file f.

12.5. Additional procedures

page(f) causes skipping to the top of a new page, when the
textfile f is printed.

13. Programs

A Pascal program has the form of a procedure declaration except
for its heading.

{program> ::= <program heading> <block>

{program heading> ::=
program <identifier> (<program parametersd>) ;

{program parameters> ::= <identifier> {, <identifier> }

The identifier following the symbol program is the program name;
it has no further significance inside the program. The program
parameters denote entities that exist outside the program, and
through which the program communicates with its environment.
These entities (usually files or databases) are called

external, and must be declared in the block which constitutes
the program like ordinary local variables.

The two standard files input and output must not be declared
(cf.12.), but have to be listed as parameters in the program
heading, if they are used. The initialising statements
reset(input) and rewrite(output) are automatically generated and
rnust not be specified by the programmer.

Examples:

program copy(f,g);
var f,g: file of real;
begin reset(f); rewrite(g);
while not eof(f) do
begin g := f7; put(g); get(f)
end

end.

Page U2

program copytext(input,output);
var ch: char;
begln
while not eof(input) do
begln
while not eoln(input) do
" begin read(ch); write(ch)
end;
readln; writeln
end
end

program copyitems(mybusiness,orderlist);
type ... {see 6, examples}
item = record ... end;
business = database ... end;
var mybusiness: business;
~ orderlist: file of item;
begin rewrite(orderlist);
with mybusiness do
for each p in parts: some o in orders
~ (p.itemname = o.itemname) do
begin orderlist] := p;
- put(orderlist)

end

end.

14. A standard for implementation and program interchange

A primary motivation for the development of Pascal was the need
for a powerful and flexible language that could be reasonably
efficiently implemented on most computers. Its features were to
be defined without reference to any particular machine in order
to facilitate the interchange of programs. The following set for
proposed restrictions is designed as a guideline for
implementors and for programmers who anticipate that their
programs be used on different computers. The purpose of these
standards is to increase the likelihood that different
implementations will be compatible, and that programs are
transferable from one installation to another.

1. Identifiers denoting distinct objects must differ over their
first 8 characters.

2. Labels consist of at most 4 digits.
3. The implementor may set a limit to the size of a base type
over which a set can be defined. (Consequently, a bit pattern

representation may reasonably be used for sets.)

4. The first character on each line of printfiles may be
interpreted as a printer control character with the following

Page U3

meanings:

blank : single spacing
'o! : double spacing
v : print on top of next page
"4 : no line feed (overprinting)

Representations of Pascal in terms of available character sets
should obey the following rules:

5. Word symbols - such as begin, end, etc. - are written as a
sequence of letters (without surrounding escape characters).
They may not be used as identifiers.

6. Blanks, ends of lines, and comments are considered as
separators. An arbitrary number of separators may occur
between any two consecutive Pascal symbols with the following
restriction: no separators must occur within identifiers,

numbers, and word symbols.

7. At least one separator must occur between any pair of
consecutive identifiers, numbers, or word symbols.

- — -

actual parameter

adding operator

array type

array variable
assignment statement
base type

block

case label

case label list

case list element

case statement
component designator
component identifier
component list
component selection
component type
component variable
compound statement
conditional statement
constant

constant definition
constant definition part
constant identifier
construction

control variable
database component designator
database component identifier
database component type
database section
database type

database variable

digit

digit sequence

element denotation
element denotation list
element variable

empty statement

entire variable
expression

factor

field designator

field identifier

field list

file buffer

file type

file veriable

final value

fixed part

for list

for statement

formal parameter section
function declaration
function designator
function heading

OO OO OO N ca VO IO\ 0O\WO

SO VOOV TIONTITIOETOPOOOEW TN ~J O CO U —as UTUT OO ~J

Oo - 3 .

-

PN NN

- .

Oo

DCECELVE VGRS IS N S RAD V) - PPN

. m .

D=2 = -

PPN

. . . »

PPN W a aasw

.

NDOYOYOVY PO W

Wil NwwWwEwWwMN NN

-3

N =

N

W

ww W

and 6.2.2

Page 44

Page 45

function identifier 8.2
goto statement 9.1.3
identifier y,
if statement 9.2.2.1
index type 6.2.1
indexed variable T7.2.1
initial value 9.2.3.3

! key component identifier 6.2.5
label 9.
label declaration part 10.
letter 3.
letter or digit 4,
multiplying operator 8.1.2
parameter group 10.
pointer type 6.3
pointer variable 7.3

| predicate 8.1.1
procedure and function 7.3
procedure and function

declaration part 10.

procedure declaration 10.
procedure heading 10

procedure identifier 9.1.2
procedure or function declaration
procedure statement
program
program heading
program parameters
quantified expression
gquantifier
record
record component list
record section
record type
record variable
referenced variable
relation
relation element
relation element 1list
relation element type
relation element type identifier
relation expression
relation key
relation type
relation update operator
relation variable
relational operator
repeat statement
repetitive statement
result type
scalar type
scale factor
| selected variable
, selection
i selection expression

set
i Set element

O
e WlWW e O
——) ek - - -—

n

-
-— b

[NVEL\V IV

whh

n

.
W Iz Ut (G100 |

-
= PN ~-=MND-=MNN
—

n

OO TENa@mOOOIOVOAONDONROONIICN0COD0 == =
n
=

|

l
'

set element list

set type

sign

simple expression
simple statement
simple type

special symbol
statement

statement part
string

structured statement
structured type
subrange type

tag field

term

type

type definition

type definition part
type identifier
unlabelled statement

unpacked structures type

unsigned constant
unsigned integer
unsigned number
unsigned real
variable

variable declaration

variable declaration part

variable identifier
variant

variant part

while statement
with statement

with variable

with variable list

. - . O
. —_ n
w

=N
W

-3 "

AV

. O o
NN — .

VOOV OUVONI o IIEETTOONNO0O OO ONOD Z s OLWOOOIEOND
. . c e O e e e s .

W N
—

Page U6

