
Bericht Nr. 66
i.

PASCAL/R REPORT

Joachlm W. Schmidt, Manuel Ma11

IFI-HH-B- 66/BO

'i

January 1 980

Faehbereich Informafik
Universitaet Hamburg
Schlueterstrasse 70
D-e000 Hamburg 1 3

Il_-

* t * tt * 16 * * I * * r n * * I * * * rf il' lt I * * ft * r * * t * ll I * I * t I * * t l t * | I *
*
*
lf
t(

*
It
I
*
*

T
*
t
t
*
*
t
t
t

PASCAL/R REPORT

Itt
**
* * * fr lt tf t * * tt * t tt tt lt * rf rf * rß * * * * lt n t * lt I * r * il * I * t * t I I * r il t t I

11

TABLE OF CONTENTS

1

4l.

2.

4,

5.

1n

1',I

1-t1.

t<

a ll
lrt.

Introduction '................
Summary of the language

Notation, terminology, and vocabulary'.

Identifiers, Numbers, and Sbrings

Constant definitions ... '..... r....

Data type definitions r.,..... '..
6.1. Slmple types,..
6.2. Structured typesi.
6.3. Pointer types ..., '..... ,.....

DecI araElons and denotations of variables ,

7.1. Entire variablesr...
7.2. Component variables
7.3. Referenced varlables,.......

Expressions...'.
8.1. Operators...,....
8.2. Function designators,

Sfatements'......,.,.r.,....
9.1. Simple statements ..i.......
9,2. Structured statements ...'o...

Procedure decLarations . .,
1 0. i . Standard procedures

Function declarations
i 1. l.Standard functions ...

Inpuf and OuLput

Programs

A standard for implementat,ion and program interchange ,.'...

Index i........

1

I

6

7

I

I
B

9
12

rJ
14
14
16

16
18
ZI

11
1C
25

31
34

36
37

?R

41

.+z

44

a

9.

iii

Page'l

PASCAL/R REPORT

Joachim W. Schmidt,, l,lanuel Ma11

This veroion of the Pascal/R Report is based on the Pascal Report
by N. lJirt,h as published in Kabhleen Jensen, Nlklaus I'Iirth: Pascal
User ManuEl and Report, Springer Verlag, New York, Heidelberg,
Berlln, Znd Ediblon, 1975. At1 modiftcafipns Lo the Pascal Report
are lndlcated by vertical bars.

1. Introduct,ion
- *pqrrrf ir--r-f t

The devglopment of the language l?sca], ls based on two principal
alm$, The first is to make available a language suitable to
teach programming a$ a systematic discipline based on certain
fundamental coneepts clearly and naturally reflected by the
language, The gecond is to develop lmptenentatlons of this
language which are both rellable and effieient on presently
avall.able eomputers.

The desi.re for a new language for ühe purpose of teaehing
programming is due to my dissatisfaction with the presently used
major Ianguages whose features and constructs too often cannot
be explained lpgically and convincingly and which boo often defy
systematlc reasoning. AIong with this dissatlsfaction goes my
convictiqn that bhe Ianguage in which the sLudent is taught to
express his ideas profoundLy influenaes his habtts of thought
and invqpfigp, and that the disorder governing these Ianguages
direct,Ly imposes itself onto the progranming sbyle of the
students,

There is pf course plenty of reason to be cautious with the
introduction of yet another programming language, and lhe
objection against teaching programmlng in a language which is
not widely used and accepted has undoubtedly seme
justification, at least based on short term commercial
reasoning. However, the choice of a Ianguage for teaching based
on its widespread acceptance and avaiIabllity, together wltb the
fact that the language most widely baught is thereafter going to
be the one most widely used, forms the sAfept reeipe for
stagnation in a subject of such profound pedagogical lnfluence.
I eonslder it therefore well worth-while to make an effort to
break this vicious clrcle.
Of counp€ a nelr L anguage shoui-d not be developed just for the
sake of noveLty; exlsting languages shouLd be used as a basis
for developrnent wherever they meet the criteria mentioned and do
not impede a systematic structure, In that sense Algo1 60 was
used as a basis for Pascal, since if meets the demands with
respeat to teaching to a much higher degnee bhan any other

Page 2

standard language. Thus the principles of strueturing r a!d in
fact, the form oi expressions, are copied from Algol 60. It was'
however noL deemed approriate to adopt Algol 60 as a subset of
Pascal; certain construction principlesr Päfticularly bhose of
declaraEions, would have been incompatible with those allowlng a

natural and convenient representation of the additional features
of PascaI.

The main extenslons relative to Algol 60 lle in the domain of'
data structuring facilitles, since their Iack in Algol 60 hras
considered as the prlme cause for its relatively narrow range of
applicabillty. The introduction of record and file structures
shöuld make it possible to solve commercial type problems with
Pascal, or at least to employ it succesfully to demonstrate
such problems in a programming course.

Pascal/R extends PascaL essentially by the data structure
relation. One of the major design objectives of Pasca}lR is
to integrate relation structures and PascaI data and control
structures as closely aS poSsible. This effort Seems worth-
while for two reasons.

Firstly, many programming Lasks may benefit directly from the
new data structuring facility, from its general content-based
selection and test mechanisms, and from its seb-like
operabors. Secondly, database models cbncentrate on a rabher
limited set of facilities for the structuring, querying, and
altering of data. Therefore, in practical applications, fhe
task of data transformation, validation, Selection etc. has
Lo be performed partly by the operations on the dababase and
part,ly by the operations of application programs.

The PascaI/R system 1s cot'tsidered to be a framework wiLhin
which the essenfial concepts of programrning languages and
daLabase models can be taugLtt and sLudied with respect bo
their interaction, trade-off, and impJ.ementation effort.

2, Summary 'o f the I anguage

An algorithm or computer program consisfs of two essential
parts, a descripbion of actions which are to be performed, and a

description of the data, which are manipulated by these actions.
Actions are describGdTy so-called statements, and data are
descrlbed by so-ca11ed declarations and definitions.

The data are represented by values of variables. Every variable
occurring in a sLaLemenL musL be introduced=EV a variäb1e
declarabion which associafes an ident,ifier and a data type wifh
TEaT variäbte. The gata type essentially defines t,he set of
values which may be assumed by tltaL variable. A data Lype rnay in
Pascal be either directly described in the variable declaration,
or j.t may be referenced by a type identifier, in which case this
identifj"er must be described by an explicit !ype def_inition.

r- --

Page 3

The basic data types are the scql-ar types. Their definition
indicates an ordered set of väTues, i.e. introduces identifiers
standing for each value in the set. Apart from the definable
scalar types, there exist four sbandard basic types: Boolean,
integer, char. and real. Except-f6r tlie tVpe Boof ean, bheir
-+täfues are not denoted by identifiers, but instead by numbers
and quotations respectively. These are syntactically distinct
from indentifiers. The set of values of type char is the
character set available on a particular installation.

A type may also be defined as a subrange of a scalar type by
indicating the smallest and the largest value of the subrange.

Structured types are defined by describing the types of their
ö@V indicating a structur ing mebhod. The various
strücturingmethodsdifferintFffidh,änismservingto
select the components of a variable of fhe structured type. In
Pascal, there are four basic strucfuring methodS available:
array structure, record structure, set sLructure, and file
structure.

PascaI/R provides two additional structuring methods:
relation strucLure and database structure.

In an array structure, all components are of the same type. A

componffi Uy an array selector, or computable jndex'
whosetypeisindicatedinthearraybypedefinTffi
must be scalar. It is usually a programmer-defined scalar type,
or a subrange of the type integer. Given a value of the lndex
Lype, äh array selector yields a value of the component' type.
Every array variable can therefore be re-garded as a mapping of
the index typ" onto the component type-l-Titö-time needed for a

selection does not depend on the üäIue of the selector (index).
The array structure is therefore called a random-access
structure.

In a record structure, the components (ca11ed fields) are not
necesSä7TT!-TT-iIe same Lype. In orcler bhat the-Effi of a

selected component be evident from Lhe program text (without
executing the program), a .r_e_c_o1d selector is not a computable
vafue, but instead 1s an identifier uniquely denoting the
component to be selected. These component identifiers are
rleclared in the record type def inition. Again, the time needed
Lc access a selected component does not depend on the selectort
and the record is therefore also a random-access structure.

A record Lype may be specified as consisting of several
variants. This implies that different varlables, although said
TöTE-öT tfre same type, üäy assume structures which differ in a

certain manner. The difference may consist of a different number
and different types of cornponents. The variant whieh is assumed
by the current value of a record variable may be indicated by a

component field which is coqnqtr to all variants and is caIled
t"n-a'r "? flär d . usuäIly ; T h;-ta;t;omüön-*Eö-" ärr-v ar i an t s wi r I
consTEt-öT-EäveraI components, includlng the tag field.

Page q

A set structure defines the set of val-ues which is the powerset
of-fffiTäle-Tlle, i.e. the set of all subsets of values of the
base type. The base bype must be a scalar type, and^wl11 usually
be a piogrammer-defined scalar type or a subrange of the type
i nteger .

A file structure is a sequence of components of the Same fype. A

naffi of the c6-pöi'ents is defined through bhe
sequence. At any insbance, only one component is directly
accessible. The other components are made accessible by
progressing sequenbially through the file. A file is generated
bV iequentiatly appending components at its end. Consequently'
the fife type definition does not determine the number of
c omponents .

In a relation structure all elements are of the same
type.-ffit is uniquely identified by the list
of values of its key components; the list of key component
identifiers is given in the relation type definition. Every
relation variable can therefore be regarded as a partial
mapping of the key component types into*Uliä remaining
reiätfön component types. The set of values for which this
mapping is defined can expand and shrink by insertion and
Oeibfiön of relatlon elemenbs; the mapping can be redefined
by replacing relation elements by elements with identical key
vätues. A general selection mechanism yields all the relation
elements that fu1fill a given predicate.

In a database structure, the components are relations of
possi6m. A database selector is an
i.dentifier uniquely denoting bhe component to be selected.
These component identifiers are declared in the database
type definition.
Variables cleclared in expliclt declarations are called static.
The declaraLion associates an identifier with the variaETe wh'ictr
is used to refer to the variable. In contrast, variables may be
generated by an executable statement. Such a dynami_c generation
yiefOs a so-caIIed Pginter (a substitute for an explicit
identifier) which sü6seluently serves to refer to the variable.
This pointer may be assigned to other variables, namely
variables of lype pointer. Every poinLer variable may assume
values pointing to variables of the same type T only, and it is
said to be bound to this type T. It mäYr however, also assume
the v alue nTTl-wfrictr po ints Lo no variable. Because pointer
variables fray also occur as components of structured variables,
which are themselves dynamicalty generated, the use of pointers
perrnits the represenLation of finite graphs in ful1 generality.

The most fundamental statement is the assignment statemeltt. It
specifies fhat a newly computed value 6A-ässlgled-[o ä variable
(or components of a variable). The value is obtained by
evaluating an expression. Expressions conSist of variableS,
constants, sets, recE7ts, relations, operators and functions
operating on the denoted quantities and producing net values.
Variables, constants, anci functions are either declared in the
program or are standard entities. PascaI defines a fixed set of

page 5

operators, each of which can be regarded as describing a mapping
from t,he operand types into the result type. The set of operators
is subdivided into groups of

1. arithmetic operators of addition' subtractionn sign
T@atlon, dlvision, and computing the
r emaind er .

2. Boolean operators of negation, union (or), and eonjunctlon
Tffi

3. set operators of unlon, intersection, and set difference.

4. relational operators of equality' lnequality, ordering, set
mem5er-snTp and-seT-Tnclusion. The results of relatlonal
operations are of tyPe BooIean.

Pasc aL/R defines existential and universal quantifiers.
Quantifled expressions consist of quantifiers, variables,
FeTäTIons, änmooTean expressions; the value of a quantified
expression is of type Boolean.

The procedure statement causes the execution of the designated
p. o cäAürr--T;u e-E eToil)T-A s s i g nm e n t a nd p r o c ed u r e s t a t em e n t s a r e
the components or building blocks of structured staternsli'bqt
which specify sequentiat, selective, d-FäFefeO-ex6ution of
fheir components. Sequential execution of statements is
specif ied by the compoun-d sbjrtement,, conditlonal or selective
execution by the if statement and the case statement, and
repeated exäcutioE-bilf,na fgg! statsFEiT,-mililmfe sFgtement,
and the for statement. The if statement serves to make the
execution of-ä-TEäT6'ent dependent on the value of a Boolean
expression, and the case statement allows for the seLection
among many statements according to the value of a selector. The
for staLement is used when the number of iterations is known
beforehand, and the repeat and while statements are used
o therwi se .

A statement can be given a name (identifler), and be referenced
ihrough that identifier. The statement is then calIed a

procedu4e, and if s declaratlon a pro-cedure declargtion. Such a

AecTaraTTon rnay addiLionally contain a set of variable
declaraLions, type definitions and further procedure
decl araLions. The variables, types and procedures thus declared
can be referenced only within the procedure itself, and are
fherefore called 1oca1 to the procedure. Their identifiers have
significance only-ilfTEin the program text which constitutes the
procedure declaration and which is called the scope or these
identifiers. Since procedure may be declared 16ffi'I-to other
procedures, scopes may be nested. Enbities which are declared in
the main program, i.e. not locaI to some procedure, are called
global. A procedure has a fixed number of parameters, each of
wEföI-is denoled within the procedure by an identifier called
the formal parameter. Upon an activation of the procedure
statEfrFnEf än acfüäT quantiby has to be indlcated for each
parameter which can be referenced fron within the procedure
through the formal parameter. This quantity 1s called the actual

Page b

parameter. There are four kinds of parametens: value
!äiEfrETöFs, variable parameters, procedure and function
parameters. In the first case, bhe actual parameter is an
expression which is evaluated once. The formal parameLer
represents a local variable to which the result of this
evaluation is assigned before the execution of bhe procedure (or
function). In the case of a variable parameter, fhe actual
parameter is a variable and the formal parameter stands for this
variable. Possible lndices are evaluated before execution of the
procedure (or function). In the case of procedure or function
parameters, the actual parameter is a procedure or function
ident,ifier.

functions are declared analogously to procedures. The only
äTTTeffiöe lles in the fact that a function yields a result
which is confined to a scalar or pointer type and must be
specified in the function declarabion. Functions may therefore
be used as constituents of expressions. In order to eliminate
side-effects, assignmenLs Lo non-local variables should be
avoided within function declaratlons.

3. No tation , terminology , and vocabul ary

According to traditional Backus-Naur formr sVotactlc constructs
are denotecl by English words enclosed between the angular
brackets (and
meanlng of the construct, and are used in the accompanying
description of semantics. Possible repetition of a construct is
indicated by enclosing the construcb within metabrackets { and
]. The symbol (empty) denotes the nul1 sequence of symbols.

The basic vocabulary of Pascal consists of basic symbols
classified inlo leLbers, digils, and special symbols

(let,ter)

<digil) ti= 0i1 4i5i6 7i8i9
(spec iaI symbol)

+ i - I x i / | : i <> i < i > | (= |)= i (i) i

W

J

B
X
L
t

Y
tl

äa

U

z
FiG
hln
xiy

E

a

w

HiIIJiKiLIMINiO
dleifieihiiijlk
z

PlQiRisiT
liminloip

t r I tt Iutvl
qlrl

3

I i] i { i } i := i | , i ; i : | ' i I i div i

mod I n1l i tn I or i ang I not I r! I then l-Eg I

Ii]i{ii
6äse i-öT i repe aE-i u'äETr i*wEi.r e-f oo-T-Tor l- to I

äöwnto T-ueeTn f-na T-wTEn i-EoEo i const-T-varl
@l eggy' T lgegrq l-EE! | IIT" i füqqEion-T-
pFocedure-i--ranäI*l--packed-l pFoeram l--
=-T-:r-T

:a-T*äTr l-ome i eäcI.-T-Felation I database

The construct
{ (any sequence of symbols not containingrt } f'> }

may be inserted between any Lwo identifiers, numbers (cf. 4), or
special symbols, It is called a comment and may be removed from
the program text, without alterin[--Tts-meaning. The symbols { and

page 7

] do not occur otherwise in the language, and when appearing in
syntactic descrlptions they are meta-symbols like i and i!=
The symbol pairs (* and *) are used as synonyms for { and } .

4. Identifiers, Numbers, and Strings

Identifiers serve to denote constants, types, variables,
procedures and functions. Their association must be unique
within their scope of validity, i.e. within the procedure or
function in which they are declared (cf. 10. and 1 1.).

(identlfier) : := (letter> {<fetter or digit> }
(letter or digit) ::: (letter) i (digit)

The usual decimal notation is used for numbers, which are the
constants or the data types integer and real (see 6.1.2.) The
letter E preceding the scale factor is pronounced asrrtimes i0
to the power oftr.

(d1git sequence) ! r= (digit>{<digit>}
(unsigned integer) ::= (digit sequence)
(unsigned real) ::: (unsigned integer).(digit sequence) i

(unsigned integer). (digit sequence>E(scaIe factor) i

(unsigned integer) E (scale factor)
(unsigned number) ::: (unsigned integer) i (unsigned real)
(scale factor) ::= (unsigned integer> i

(sign>(unsigned integer)
(sign) ::= + i -

Ex ampl es:
1 1 00 O. 1 5E-3 87. 35E+8

Sequences of characters enclosed by quote marks are calIed
st,rings. Strings consisting of a single character are the
ööisTants of the standard type char (see 6.1.2.). Strings
consisting of n (>1) enclosed characters are the constants of
bhe types (see 6 .2.1 .)

packed array [1. .n] of char

lJofe: If the st,ring is to confain a quote rnark, then this quote
mark is Lo be written twice,
(sLring> ! i= r(character>{(charact,er>} t

Examples:
tAl t;t rrrl

'Pascal' 'THIS IS A STRING'

Page 3

5. Constant definil"ions

A constant definition introduces an identifier as a synonym to a

constant.

(constant idenLifier) ::= (identifler)
(constant) ::: (unsigned number) i (sign>(unsigned number) I

(constant identifter) i (sign)(constant identifier) I

(string)
(constant definition) ::= (identifier) = (consLanf)

6. Data type definitions

A data type determines the set of values which variables of that
type may assume and associates an identifier with t,he type.

(type) ::: (simple type) | (sbrucfured fype) i <pointer type>
(type definition) ::= (identifier) : (type

6.1. Slmple types

(simple type) ::= (scalar type> | (subrange type) i

(type id enti fier)
(type identifier> i r= (identifier)

6.1.1. Scalar types

A scalar bype defines an ordere<l set of values by enumeration of
'she identifiers which denote these values.

(scalar type) : :: (<identifier> i,<identifier)])

Examples:
(red, orange, ye1low, green, blue)
(cIub, d iamond , hearL, spad e)
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)

Functions applying to a1I scalar types (except real) are:

succ t he succeeding value (in bLre enumeration)
pred the preceding value (in the enumeration)

6.1.2. S!anCard types

The following types are standard in Pascal:

integer The values are a subset" of Lhe whole numbers
defined by individual implementations. Its values
are the integers (see 4.).

real Its values are a subset, of the real numbers
d epend ing on Ll-re particul ar implementation. The

Page 9

Boolean

c har

values are denoted by real numbers (see 4.).

Its values are the truth val-ues denoted by the
identifiers true and false.

Its values are a set of characters determined by
particular implementations. They are denoted by
the characters themselves enclosed wit,hin quotes.

6.1.3. Subrange types

A type may be defined as a subrange of another scalar type by
indication of the least and the largest value in the subrange.
The first consbant specifies the lower bound, and must not be
greater than t,he upper bound.

(subrange type) ::: (constant) (constant)

Ex ampl es : 1..100
-10 +10
Monday Fr id ay

6.2. S!ructured. types

A structured type is characterised by the type(s) of its
components and by ifs structuring method. Moreover, a structured
type definition may contain an indication of the preferred data
representafion. If a definltion is prefixed with the symbol
packed, this has in general no effect on the meaning of a

Frogram (for a restriction see 9.1.2.); but it is a hint to the
compiler that storage should be economized even at the price of
some loss in efficiency of access, and even if this may expand
the code necessary for expressing access to componenLs of the
strucLure.

(structured fype) ::= (unpacked sLructured type> i

packed (unpaeked structured type)
(unpacked structured type) ::= (array type> i

(record type) | (set type) i (file type) i

(relation type> | (database tYpe)

6.2,1. Ar ray types

An array type is a structure consisting of a fixed number of
cornponents which are all of the same type, cal j-ed the componen!
lype. The elements of the array are designated by indices,
values belonging to the so-called index type. The array type
definition specifies the component-E![E-EF rJel1 as the index
Lype.

(array t,ype) : :: äFraV [(index type) {,<index type> } J of
(componenL type)

(index type> : := (simple type>
(component fype) : :: (type)

I

F age I tr

If n index types are specif ieci, the arräy type is cal.led
n-dimensional, and a component is designated by n indices.

Ex ampl es :

6 .2 .2 . Re cor_d tJpe s

A record type is a structure consisbing of a fixed number of'
components, possibly of different types. The record type
definition specifies for each component, called a fieId, its
type and an identifier whicli denotes it. The scope-dFThese
so-caI1ed field identifiers is the record definition itself, and
they are aTso Tccffi6-Ie wTthin a f ield designator (ef . 7.2,)
referring to a record variable of this type.

A record type may have several variants, in which case a certain
field may be designated as the tag _liglg, whose value indicates
which variant is assumed by the record variable at a given time.
Each variant sLructure is identified by a case label whieh is a
constant of the type of the tag field.
(record type) ::= record (field tist) end
(f ield list) : : = ?fITecl part) i (f lxeä'lart);(variant part) i(variant part)
(fixed part) : := (record section) {;(record section)}
(record section> ::=

(fietd identifier) {, (fleld idenbifier) i : (bype) | (empty> i(variant parf) ::= case (tag field) (type identlfier) of
?variant) {; (variant) }(variant) ::= (case labeI list> : ((field list)) i (empty)

(case label I ist) : : = (case 1abel> { , <case 1abel) }
(case labeI) ::= (constanL>
(tag field) ::: (identifier) : | (empty)

Examples: record day: 1..31;
month:1..12;
year: integer

snd

record name, firstname: alfa;
age: 0..99;
married: Boolean

sng

record X,V! reall
area: real;

ease s: shape of
tiTängIe: (!ioe: rea1l

inclination, ang1e1 , ang1e2: angle) ;
rectangle: (side1, side2: real;

skew, angleJ: angle) ;circl.e: (diameter: real)
end

array t1..100:l of real
ärrav t1..10,1.;2Ol of 0..99
array IBoolean] of cöTor

I

Page 1 1

6.2.3. Set tYPes

A set type defines the range of values which
its so-ääLteA base typ-e. Base types must not
types. OperatoTS-äplTEable to all set types

+ union
- set' d ifference
* intersectlon
rn membershiP

The set difference x-y is defined as the set
x which are not members of Y.

(set tYPe) ::: set of, (base tYPe)
(base Li'p"> ::= ?FfmFfe tYPe)

<fiIe tyPe) ::= file of <type)

6.2.4. Fit_e tYPes

A file type definition specifies a structure consisting of a

"equun""-
öf components wtricfr are aIl of the same type ' The

nrtiU"" of "ompoh"nts,
ca11ed the Iengt.h of the f i1e, is not

f ixed by the fif "
type def initionlTTTf e with 0 components is

caIled gmptY.

is the powerset of
be structured
ar e:

of all elements of

Files wiLh component type char are called bextfileg, and are a

special case insofar as- the component rangETF-üETües must be
considered as extended by a mari<er denoting bhe .end. of a I ine '
This marker allows textfiles to be substructured into lines' The

type text is a standard type predeclared as

gype text : file of char

6 .2.5. Relatioj tYPes

A relation t,ype definit,ion specifies a structure consisting of
elemenfs of the same type, cä1led the relation el9me4 !y!9'
The number of elements,-cal1ed the gizE-oF-T6e relation, is not
fixerl by Lhe relation type definition. A relation with zero
elements is called empty. ttre elemenLs of a relation are
identified by the component values of the relation key' The

relation type definition specifies the element type as well as the
relation key. There is at most one element in a relation with a

given value for the eomponents speclfied by the list of key
componenf identifiers.

(relation tYPe) ::= relation ((relation keY)) of
(relation etemEEt tYPe)

(relation keY) ii=
(key comfänent idenfifier> { , <key component identifier) }

(key component identifier > ::= (identifier)
(relation element tYPe) ::: (tYPe)

I In the current version of PascaL/R relation elemenL types are

Page 1..1

restricted to
(relation elemenb tYPe) I i =

record (element sect,ion) t ; (element section) l
TETäTion element type identif ier)

(element section) : :;
<component iO entifier) { , (component id enti fier> } :

(componänt type ldenttfier) I (empty)
(component identifier) : := (idenfifier)
(componenr it;;-ioentifier) : := (t,ype identlfier)
(reration eiää"nt fype identifier) ::= (type identlfier)

The type associated wlth the component type identifier must be

scalar type, subrange type, standard type or a rrsttningt' type
ip""r."o äi^rqv [1 . .n] oI char) ' l

relation (itemname) of
'--Ecord f orm: sEäpe ;

end -l

Ex amples:

6 .3 . Po lnlei_UPe-s

code: color;
itemname: alfa;
prlce: lnbeger

end

6 .2.6 , Dq tab ass .9YPss

A database type is a strucbure consisting of a fixed number of
relation type componentsr Possibly of dlfferent type' The database

type definition-;;;;ifle".ior eacfi component its type and an

identifier wfriän-äenot"s it. The scope of these so-called database

component iOentifiers is the databasä deflnttion itself, and they
are also, accessible within a database component.deslgnator (cf'
i.a.) referring-to a database variable of this type'

(database lYPe) : :=
database (database section) {; (database section) } end

<daTä[Ese sectlon) : :: (database component ident'ifier5--
{,(database cömponent idFn!ifier)} :

(äatabase compohent type) i (empty)
(database component type) ::: (relation type) | (t'ype identifier>

variables which are declared in a program (see 7.) are
accessibl.e by fheir idenLifiers. They exisf during the entire
execufion precess of the procedure (icope) to which the variable
is Iocal, and these variables are thereiore called stattc (or
sfatically allocated). 1n contrast, variables may aTE6*TE
generated dynamically, i .e_. without any correlation to the
structure of il; pioäi"tn. These .Jy.nlm:g variables are generaf ed

by the standard pro"äOure r:rebr (s6ä*TdlT.2.)l since they do not
occur in an explicit variaETe declaration, they cannot be

referred to by'a name. Instead, aceess.is achieved via a

"o-"al1ed -poiäter value whieh is provided upon generation of the
dynamic vari"6Gl g pointer type tf,us consists of an unbounded

Page 1 3

set of values Pointing
operatlons are defined
test for equalitY.
The pointer value nil
to no element at all.

Examples of
c olor
sex
tex t
shaPe
c ard
alfa
compl ex
per so n

i tem

to elements
on pointers

belongs to ev

of t,he same tYPe. No
except the assignment

ery pointer fYPe; it
and t,he

points

(pointer type) ::= I (type identifier)

type definition:
(red, yeIlow, green, blue)
(maIe, female)
file of char
TFIa6E:-e, rectangle, circle)
array t 1. .B0l of char
pacnäo array tT;.101 of char
reäoiA re;Im: real end
Fecoiä name, firstnäile: alfa;

case s: sex of._
mal e:
femal.e

end
76cord form: shaPe;

age: integer I

married: Boolean;
father, chi1d, sibling: fPersonl

(enFstecl , bold : Boolean) ;

: (pregnant: Boolean;
äizä: arral t1''3I of lnteger)

company

items
companies
business

end
Fecord

end
Fdation

code: color I
itemname: a1 fa;
price: integer

companyname, c ilY: alfa ;

ohonenumber: inLeger

(itemname) -9I item
(companyname,citY) of comPanYrelation

database
- pafEs: items;

suppliers: comPaniesl
oräärs: relatiön (ibemname'companyname,city>

reö67ä*6ompanyn ame' c ity, i temname : a 1

quantitY: inbeger
end

sIId

7. Decl araLions and denotations of' variables

of
t'a i

Variable declarations consist of a 1i
the ne!.r variables, followed by their

(variable declaration) I l= (identlfl

Every declaration of a file variable
implies the additional declaration of

st of identifiers denoting
type.

er>{,(identifier')i : (tYPe)

f with comPonents of tYPe T

a so-ca11ed buffer

' Page 14

T. This buffer variable is denoted by fT and

components to the file during Eeneration and

1e during inspection (see 7'2'3' and 10'1'1')'

Ex amples:
x ry rzi real-
u rv: comPlex
i,i: integer
k: 0..9
P rQ: Boolean
operator: (Plus t

a: array t 0. .63 l
b: @- [color

'c: color
f : file of char
hueTJu62: q9! of color
p1 , p2: TPerson
t,hisPart: i tem
oldPärts, newParts: items
mybusiness: business

Denotations of variables either designate an entire variable' a

component of a variable, or a variable referenced by a polnfer
(seä 6.3.). Variables occuring-in examples in subsequent
chapterS are assumed to be deöIared as indicated above'

(variable) : := (entire variable) | (component variable) i

(r eferenced variable>

7.1. EnLire variables

An entire variable is denoted by iüs identifier.

(entirevariable)::=(variablei'dentifier)
(variable identifier> : :: (identifier)

variable of tYPe
3ffiEFTo a pPend
to access the fi

A component of an
variable followed

minus, times)
of real
Eooleanl of comPlex

followed bY
selector

n-dimensional array variable is denofed by the
by n index exPressions.

A component of a variable is denoted by Lhe varlable
a sel-ecLor specifying the component'. The form of the
AepenOs on tire stiuciuring type of the variable'

(componenLVariable)::=(indexedvariable,>i
(field d;signator> i <f11e buffer) I

(databasecomponentdesignaIor)|(select.ed

7 .2. 'l . Indexed variables

var iable)

(indexed 'rariable) :

(array v ariable)
(array variable) ::=

' i<"*p.ession) t,(expressj-on)] l
(variable)

Page 15

The types of t,he index expressions mus{. r:Orrespond wlth the
index typus declared in fhe definition of t,he array fype.

Ex amples :
a[12]
aI i+ j]
bIred, truel

7 .2.2. Field designat-ors

A component of a record variable is denoted by the record
variaüte followed by the field identifier of the compon.ent'

(field designator) : :: (record varlable). (field identifier)
(record variable) : := (varlable)
(fieId identlfier> : := (identifier)

A component of a database variable is denoted by tll" database
variaüte followed by the database component identifier.

(database comPonent designator) : ::
(d atabase ü ar iab 1e) . (database c omponent id enti f ier)

(database variable) : := (identifier)
(database component identifier) : :: (identifier)

Ex amples:
u.re
bIred,true].im
P2f. size
mybusiness. Parts

7.2.3. File buffers

At any time, only f he one component determined by !1,9 current
file bositiön (räad/write heaä) is directly accesslble. This
component is caIled the current file component and is
represented by the file's buffer variable.

<file buffer) :

< file v ariable)
<file variable)l

:: (variable>

T .2.U. Selected variables

An element of a relation variable is denoted
followed by n selection expressions.

(selected variable) : :=

by Lhe variable

(relation variable) [(expression) {,(expression)
(relabion variable) ::= (variable)

The types of the selecLion expressions must correspond with the
types-äf the key components iäent,ified by the definition of the
reL ation type.

il

Page 16

The type of a selected variable is defined by the relation
elemeirt type wlth the additional constraint that the values of
the key components are restricted to the values of the
selection eipressions. This implies that the values of the key
components of a selected variable can not be altered. The value
of ä selected variable is vold (see B.) if there is no relation
element wlth key values equal to the selecbion expressions.

Ex ampl es :

nehJpartsI tcard read er I]
mybusiness.orders[' tapereader' , P] l. name, I hamburg rl

7.3 Re ferenced variables
(referenced variables) : := (poinber variable)l
(pointer variable) ! != (variable>

If p is a pointer variable whlch is bound to a type T, p

denotes that variable and its pointer vaIue, whereas pl denobes
the variable of type T referenced by p.

Ex ampl es :

pll.father
pll.sibtingl.child

B. Ex pressions

Expressions are conStructs denoting rules of computation for
obtaining values of v ariables and generating ne!,, v alues by the
application of operators. Expressions conslst of operafors and
operands, i.€. varlables, constants, and functions.

The rules of composition specj.fy operator precedences according
Lo four classes of operators. The operators hot, some and
all have the highest precedence, followed by-Tfie silöalIed
müTtiplying operators,' then the so-ca11ed adding operators, and
finaIly, with fhe lowest precedence, the relational operators.
Sequenäes of operabors of the same precedence are executed from
left fo right. The rules of precedences are reflected by the
following syntax:

(unsigned const anL> : : = (unsigned number> | (string) i

(constant identifier) i nil
(ractor> : : = :::iä;:l;i, i i':3:l9nio.;::;:äl'i i"li:tiil!"r(quanfified expression) i ((expression)) i

not (facLor>
(term) ::= <fääEor> i (term>(multiply
(simPle exPr"::il;i"' ;;r::::Ti"j (acrd

(sign)(term)
(exp: ession> : := (simple expression) i

i ng operator) (factor>

ing operator)(t,erm) I

Page 17

(simple expression)(relat,ional operator)(simple expression)

Elements which are members of a set must all be of t,he Same type'
which is the base type of the set.

(set) ::: [(set element list)]
(set element list) ::= (set element) {,(set element)i | (empty)
(set element) ::: (expression) | (construction)
(construction> ::= (expression) (expression)

tl denotes the empty set, and Ix..y] denotes the set of all values
in bhe interval x..y.
(record) ::: ((record eomponent Iist)
(record component list) ::: (expression) t,(expression)l | (empty)

Elements which are members of a relation must all be of bhe same
type, which is the relation element t'ype. Any set of component
designators such that every two elements of a relation expression
differ by the value of the designated components defines a key of
a relation _eIprsssion.
(relation) ::= [(relation element list)]
(relation element list) ::=

(relation element) t,(relation element)] | (empty)
(relation element) ii= (expression) | (selection) I

(component selection)
(selection) ::= (element denotatlon list) : (selection expression>
(component selection) ::= (component list) oI <selection)
(element denotat,ion list> ::=

(element denotation) { , (element d enotat,ion) i
(element denotation) : ::

each (element varlable> in (relation expression>
<comp6iEi't 11st> ::=
(component, designator) : :=

(element variable).(component identifier)
(element variable) i t= (variable idenfifier)
<veriable identifier) : := (idenbifier)
(selection expression) ! i: (BooIean expression)
(relation expression) i !: (expression)
(Bool-ean expression) : := (expression)

tl denotes the empty relation, and Ieacl fv in r : e] denotes
the relation consisting of each element of the relation variable r'
that makes the selection expressiotr €r true (see 9.2.3.3.).
The element variable, €.8. fv, in an element denotabion is called a

free element variable. Tire scope of a free element variable is
EEe eTemeffi*oT-TEä-7E1ation element 11st the variable is def ined
ln; its fype is the element type of the subsequent relation
expression.

The value of a relation expression is not altered if the void
record, ('>, is included in a relation element list:
[. . . rrecir(),reek,...] : [. ..,reci,reckr...].

This definition imPlies:

Ex ampl es :

Re lations:

Factors:

Terms:

Simple expressions:

Page 1 8

i< >l = [].

Ithispartl
Ieach p in oldparts: p.form = clrcle]
ie-äöE o Tn mybusiness.orders:

3öme p in newparts
To.itemname : p.itemname) l

Ieac[p1 1n oldParts:
pl.code : thispart.code,

each p2 in newparts: truel
[GTTtemnäme, o.quantity) -of each o in

mybusiness.oiders: o.qilänETEf > J-t
x
15
(x+y+z)
sin (x+y)
Ired rc rgreenl
[1,5,10..19,231
not p
3ffie p 39 oldparts (p.price < 7)
(öJFcle,green,fbolt' r7,

x*y
i/(1-i)
porq
(x?=y) and (y (z)

x+y
-x
hue 1 + hue2
i*j + 1

x = 1.5
p(=q(i<j) = (j<k)
c in huel
o1d'['arts (= mybusiness. Parts
nehrpartsI I cardread er'] in mybusiness. parts

i!x presslons:

8. 1 . 0perators

if both operands of the arithmetic operators of addibion'
subtraction and multiplication are of type integer (or a

subrange fhereof), then result is of type lnteger._ ff one of
lhe opärands is of type real, then t,he result is also of type
real.

Pa6e 1 9

B. 1 . 1. lhq opglg-t-or gM!jliel1-l9gs.r*e]]
The operator not denotes negation of ifs Boolean operand.

(quantified expression) i i= (quantifier) (element variable)
(quantif i.er) : : = some i g11

j'n <relation expression) (pred icate)
(predicate) ::= (-<sefection expression)) i

(quantlfied expression>

I quanti fier i operation i type of resul b I

some

aII

logical t'existential quantificationrf
(see 9.2.3.3.)

logical tfuniversal quantificationrt
(see 9 .2.3. 3.)

Bool ean

Boolean

Element variables in quantified expressions are called bound
element variables. The scope of a bound element variaUlEE-tfre
sffiequefrEliEffiöate, i.ts type is the element type of the
subsequent relation expression. Components of bound element
variables and of free element variables are of identical type if
they are declared by the same component type identifier.

B. 1 . 2. l4u1 tipl ying operators

(multiplying operator) ::= * i / i Qiv I mod I and

loperatori operation i type of operands I type of resulti

*

div

mod

end

multipl ication
seL intersection

d iv ision

d iv ision wi th
truncatlon

modul us

logical rrandrt

real, integer
any set type T

real, integer

integer

I nteg er

Boolean

real, integer
T

r eaI

i nteg er

integer

Bool ean

-

Page 20

8. 1.3. Addin8 operators

(adding operator) li: + i - | or

loperatorl operation I type of operands I type of resulti

or

add i tion
set union

subtraction
set d ifference

loglcal roril

integer, real
any set type T

integer, real
any set type T

Bool ean

integer, real
T

integer, real
T

Boolean

I'lhen used as operators wi th one operand only, - denoLes sign
inversion, and + denotes the identity operation.

8. 1 .4. Relational opelatorr
(relational operator) t != : I

I operator I type of operands i type of result i

: ()

(:)=

in

any scalar or subrange type

any scalar or subrange type
and its set type respectivelV,
or any relation element type
and its relation type
respectively

Boolean

Boolean

Notice t,hab all scalar types deflne orderell sets of values.

The operators (), (=,)= stand for unequalr less or equal, and
greater or equal respectively.
The operators (: and)= may also be used for comparing values of
set type, and fhen denote set lnclusion.
If p and q are Boolean expressions, p = q denotes their
equivalence, and p (= q denotes implication of q by p. (Note
that false (true)

Page 2l

The relaLional operators :r (), <t (=r >, >= mäy illso be used tt>

"orpu""
(packed) arrays wifh cämponents of type char. (strings),

and then denote alphaüetical ordäring according to the collatlng
sequence of the underlying set of characters'
The relational operators:r (), <r (=, >t)= may also be used to
compare values oi relation type, and t?"y denote relation equality
or inclusion. The two relatiöir expressions compared musü have

identical relation element types. Two relation element types are
the same if corresponding components are defined by the same

type id enti fier .

The relational operator, i!-, maY also.be used to tesb whether the
uäfr" of a selected variabTe, rIekJ, is void or not:

(rtekl : (>) : hot (r[ek] in r)'

This definition implies: (<) in r) = false'

The v al-ue of the exPression

r1 (: r2

where r1, r2 are relation expressions
the quantified exPression

is equal fo bhe value of

all bl in r1 some b2 inrZ(b1=bZ)

8.2, Fynction designators

A function designator specifies the activation of a function' It
consists of the identifier designating the function and a list
of actual parameters. The paramäterS are variables, exprössions'
procedures, and functions, and are substituted for the
corresponding formal parameters (cf. 9.1.2., 10., and 1 1.).

(function designator) : : = (function identifier) i

(func tion id enti fi er) ((actual par am eter) i , (actual parameter>])
(function identlfier) : := (identifier>

Examples: Sum(a,100)
ccD(147,k)
sin(x+y)
eof(f)
ord(fl)

Page 3ä

Statements

St atements
executable.
Fefererrcea

(statement)

(un1abel1ed

(label) ::=

denote algorithmic actions, and are said to be
They may be prefixed by a label which can beby goto statements.

: :=(unIabeIled statement) i(labeI) : (unlabelled stabement,)
statement) ::= (simple statement) i(struc fured statement)(unsigned integer)

9 .1 . Simple stat,ements

A simple statement is a statement of whlch no parLanother statement. The empfy statement consisti ofand denotes no action.
consti tutes
no synbols

(simple statement) ::= (assignment statement) i(procedure statement) i (goto statement) i(empty statement)
(empty statement) !i= (empty)

9. 1. 1. Asslgnment statements

The assiqnment statemenf serves to replace the current value ofa variable by a nebJ value specified bj, means of an expression.
(assignmenb sLatement) ::= (variable) != (expression) i(function ident,ifier) : = (expression) l'(re1a1,ion variable) (reration update operator)(relation expression)(relation update operaLar) t !: :+ | :_ I :A

Assignment statement,s that update a relation variable r, by areLation expression F€r using one of the relation upOate operators,:+, :-, :&, are equivalent t,o assignment statements using trreassignment operator, r=, and a morä complicabed relationexpression.

rel aLion insertion:
r :+ re
l i= [each fr in

is equivalent to

not
true, each fe

some 6Fin r
in re :
(f'e.key = br.key)

relation del eLion:

r :- re

fi=[eachfrinr
is

not some be

equivalent to
ln re (fr = be)

l-

Page 23

rel at,ion repl acement :

r :& re is equivalent to

r := [each fr in r : not some be in re (fr.key: be.key),
eä6 fe Ti' re : sot'e-F-in rJre.key = br.key) l

Assignment statements that update a relation variable, r, by a one
element relation expresslon using one of the relation update
operators, !*r i-t :&, may be expressed by means of assignment
sbatements that replace the value of a selected variable, rIekJ:

relation insertion:

r :+ [(e1, .. . ,€k,.. . . ,en)] is equiva]ent to

if not r[ek] ln rel
-- ffi6n rIek]-T= (e1,...,€k,...en)

relation d eletion:

r :- [(e1, ... r€kr...,en>J
if r[ek] in rel

t,hen rT?kl := <)

is equivalent to

relation replacement:

r :& [(ei,...,ek,...,en)] is equivalent to

if rIek] in rel
-- then rfäxl :: (e1, ...,e k,...en)

Tfre void record, (>, can be assigned to any relation element.

The variable (or the function) and the expression must be of
identical type, wi th the followlng exceptions being permitted:

1. t,he type of the variable is rea1, and the type of the
expression is inbeger or a subrange thereof.

2. ihe fype of the expression is a subrange of the type of the
variable, or vice-versa.

A relation variable and a relation expression are of identical lype
if the relation elemenL types are the same and if there is a key of
the relat,ion expression designating the same components as bhe key
of Lhe relation variable.

Ex ampl es : = !+Z
= (1 (=i) and (i<1 00)
: sqr(k) -(1tt51
= [blue,succ(c)]
:(
= [each p in oldparts:
+ t?cTFcl elFed , I screv,r
- [each p ln bldparts:
= [f-

x

v
i

hue 1

oldparts[' cardreader']
n ewpar ts
newparts
newparts
oldparts

p.price > k l
' ,7)l

p . form

Page 24

mybusiness.parts :& ieach
each

newparts: true,
oldparts: p.price = kl

p in
p in

9.1 .2. Procedure statements

A procedure statement serves to execute the procedure denoLed by
bhe procedure identlfier. The procedure stabement may contaln allst of actual parameters which are subsbituted in place oftheir coiFEEp6näTnflTöffiäf parameters defined in thä procedure
declaration (cf. t0);-me cöiiäFflöndänce is establishäo by bheposltions of the parameters in the lists of actual and foimatparameters respectively. There exist four kinds of parameters:
so-called varue parameters, variable parameters, procedure
parameters (the acbual parameter is a procedure identifier), andfunction parameters (the actuar parameter is a function
id entifier) .

rn the case of.a value parameter, the actuar parameter musL bean expression (of-ffi-Iöh-ä-taFTäEte is a simprä case) . Thecorresponding formal parameter represents a Iocal variable ofthe called procedure, and the current value of tlie expression isinibially assigned t,o this variable. rn t,he case of a variableparametgr, the actual parameter must be a variable, anä'JEf-
corresponding formal parameter represents this actual variableduring the entire execution of the procedure. If this varlableis a componenf of an array, its index is evaluated when theprocedure is called. A variable parameLer must be used wheneverfhe parameter represents a result of bhe procedure.
If a variable parameter is a relation t,he types of the variablesserving as actual and formal parameter must be identical .__Iw-g._
Lgtat'ion va.riables are of identical type if the relation eternänttypes are idönticäl änd" ir tne key r i!ls "d"eslgnate the samecömponents in t,he same order.

conponents of a packed structure musb not appear as actualvariable parameters.

(procedure statements) : := (procedure ldentifier) i(procedure identifier> ((actual parameter)
{ , (actual parameter) })<procedure identifier) : := (ident,ifier>

(actual parameter) ::= (expression) I (variable) i(procedure id enti fier) | (function id enti fier>
Examples: next

Transpose(a,n,m)
Bisect(fct,- 1 . 0, +1 . 0, x)

9 . 1 . 3. Go to statement

A goto statement serves bo
should continue aN anot,her
Lhe place of the label .

indicabe that further processing
part of t,he program text, namely at

Page 25

(goto statement) ::: goto (]abel)

The following restrictions hold concerning the applicabiLity of
labels:

1. The scope of a label ls the procedure within which ib is
defined. It is therefore not possible to jump into a
procedure.

2. Every labe1 must be specified in a label declaration in the
heading of the procedure in which the labe} marks a
statement.

9.2. Structured statements

Structured statements are constructs composed of other
statements whieh have to be executed either in sequence
(compound statement) , cond itionally (cond itional statements) , or
repeatedly (repetitive statements) .

(structured statements) ::= (compound statement) i(conditional statement) I (repetitive statement) I(with statement)

9.2.1 . Compound- statements

The compound statement specifies that its component statements
are to be executed in the same sequence as bhey are written. The
symbols begin and end act as statement brackets.

(compound statement) ::= legin (statemenü) {;(statement)} en4

Example: begin z := x ; x != y := z end

9,2.2. Conditional statements

A conditional statement selects for execution a single one of
i Lr; component statements.

(condilional statement> : :=
<if statement) I (case statement)

9 .2 .2. 1 . If statements

The if statement specifles thab a statement be executed only if
a certain condibion (Boolean expression) is true. If it is
false, bhen either no statement is to be executed, oF the
sfatement following the symbol else is to be executed.

<1f statement) ! i= if (expression> then (st,atement)
i

if (expression)Then (statementfäfse (statement)

t

the symbols if anrl

Page i?6

then must be of typeThe expressiotr between
BooI ean .

No te:
The

if

syntactic amblguity arising from

(expression-1) then 1f (exPress
else <sTäTement-Z'>

t.he construc t

ion-2) then (statement-1)

then (statenrent-1) else (statement-2>

else z := 1.5
pTl'lTather

is resolved by interpreting the construct as equivalent to

if (expression-1) then
56gin i. f (expressidillZ>
eno

Ex ampl es :

if x:=1r p

Ex ampl es :

case operaLor*-[Tus: x : :
minus: x : :
Limes: x :=

end

< 1.5 then z
1 <> niT-TEen

:= x+y
p1 : =

9,2.2.2. Case statements

The case statement consists of an expression (the selector) and
a list of statemenLs, each being labe11ed by a consbant of the
fype of the selector. It specifies that the one statement be
eiäcuted whose label is equal to the current value of the
selector.

(case statement) ::= case (expression) of
(case list element)-Tl?"case Iist, element)

(case list element) ! ! = (case labeI list) :
(empty>

(case labeI list) ::= (case labeI) {,(case

] end
(EEätement)

I abel)]

of
x+y;
x'y;
xxy

case I
I: X

2zx
3: x
ti: x

end

sin(x) ;
cos(x);
exp(x);
1n(x)

of

9 . 2. 3. Repet,ilive_stategents

Repetitive staLements specify that cerfain statements are to be
executed repeatedly. If the number of repetitions is known
beforehand, i.e. before t,he repetitions are started, the for
staLement is t,he appropriate construct to express this
situatlon; otherwise the while or repeat statement should be
used.

(repetitive statement,) ::= (whi1e statement) i

(repeaL statement) | (for statement)

Pagc,)'/

9.2.3, 1. tthlle statements

(whi1e' sbatement) ::: w!i1e (expression) dg <staLement)

The expre6cion controlling repetition must be of type BooIean.
The statement is repeatedly executed until fhe expression
becomes false. If its value ls false aL the beginnlng, fhe
sbatement is not executed at aIl, The while statement

while B do S

1s equi,valent to

lf B then
bäElI's;- wlrile B 1o S

gnd

Ex amples:

while aIi] <> x do i := i+1

whlle i)0 do
SegIn if od'A(i) then z t= z *xi

f-:= i div-21-
X i = sqFIT)

snd

while not eof(f) do
lggfi P-Gl) ; get (TT
snd

9.2.3.2. Repeat statements
,--
(repeat statement) I !=

.! epeat (statement) {;(statement> } unti,l (expression)

The expression controlling repetitlon must be of type Boplean.
The sequence of statements between the symboLs repeat and until
is repeatedly executed (and at leasb once) untiTTFilexpreSfröi'
becomes true. The repeaL statenent

repea! S until B

1 s equiv alent to

beg in S

1! not B then
:

encl
rePeat s until B

-..T

Ex ampl es :

repea_t k := i mod j;
.i .- i.r r- Jr

Page 28

until
; .- LJ .- ^

1 - ll

repeat P(fi); get(
ü6TTT-eof(f)

f)

(for statement) ::=
for (control section) do (statement)

(contFoT section) | !=
(control variable) : = (for list) i (selecLion>

(for list) ::= (initial value) to (final value) i

(initial value) downto (finäT vaJue)
(control variable) :l = (identifier)
(inltial value) ::= (exPression)
(final value) : := (exPression)

The control variable, the initial value, and the final value
must be of the Same scalar type (or subrange thereof), and must
not be altered by the repeated statemenL. They cannot be of type
reaI.
If the control section is given by a selection t,he free element
variables are caIIed control el-ement variables. The scope of a

control etement variaErG-Ts tEe süEsequen'FTEätement. The values
of the key components of fhe relations denoted in the selection
must not be altered by the repeated statement.

A for statement of the form

9.2.3.3, For stateqents

The for statement indicates
executed while a Progression
which is caIled the control

lrl u := e1 Lo e2 do S

is equlvalent to the sequence

v :: el; S; v := succ(v);

and a f'or statement of the form

for v := el downfo e2 do S

is equivalent to the statement

v :: e1; S; v := Pred(S); S;

A for stafement of lhe form

that a statement is to be repeatedly
of values is assigned to a variable

variable of the for statement.

of staLemenLs

; V :: ezi S

; v :: ezi S

q.
vt

for each c in r

is eouivalent to a

: true do S

sequence of statements

c := el; S; e := e2; S; ;c en; s

Page 29

where €1, e2,
system defined

A for statement

for each c

A for statement

for each cl

is equivalent to the

for each c1 in r1
--for 6äch cfin

for

.., en are the elements of the
ord er .

of the form

in r : e do S

bo the statement

inritruedo if e then S

of the form

in rl,each c2- ln 12, .. . ,each cn in rn

relatlon r in a

is equivalent

for each c

e do S

Examples:

for i :=

statement

: true do
12 : tru6-do

each cn in rn : e do

?- Lo 63 jlo if a[i]
1 to n do
15önd6
_ ä-.
-v,

max then max := a[i]

= 1 to n dg x := x+AIi,k]*BIk,j];
:= X

f nn i . -

Io. i :=
legin x :

fork:
ffi rtULl,JI

snd

for c := red to blue do Q(c)

for each p in newparts : p.code
-- TI'-F.prEe (min then min : =

: red do
p.priG

The val-ue of the predicate

some b in r(e)

is equal to the value of a Boolean variable, vp, computed by
the statement sequence

vp := false;
lor ge-"f, c in r : true d9 up :: vp o_1" e

where e is a selection expression possibly depending on t,he
element control variable c, that is associaLed wlth the
rel ation v ar iable r .

An alogousl y , t he pr ed ic ate

all b in r(e)
corresponds Lo fhe sLatemenf sequence

Page "i,'

vp :: true;
foreachcinr:true do vp :: vp and e.

The value of the relation expression

Ieachfi4r:e]

is equal to the value of a relation variable v€r computed by tire
statement seouence

ve := t];
fof _esch c in r : e do ve :+ [c].

AnaIogouslV, the relation expression

I each f1 in r1: €1, each f2 in 12:
each fn in rn:

e2,
enl

corr espo nd s

Ve :: t];
for each
f_o_I eac6

for each

The rel ation

[(ci.r
each

to the statement seeuence

c1 in ri :

c2Tn12:
e1
e2

VE
VC

do
.t^

:+ [c1];
:+ [c2];

cninrn:endo ve :+ [cn]

expression

, ck.s, cl.t) of
cl iq 11, each c2 Ii r2,

eachcninrn:e]
corresponds to the

l/a f 'l .
LJ'

for each cl ln r
each cn

statement sequence

1 , ga.g! c2 in_ r2,
in rn : e do*ve :+ [(cTlr,ck.s,... c1.t)]

9 .2. 4. Wit,h st,atggs-t!_l

(wi th stat,ernent) : : =with (r,ribh variable list> do (sbatement>
<w1th variable 1 ist) : : = (with variable) { , (with variable) }(with variabre> ::= (record variable) | (database variable)
!,Jithin the component statement of f he with statemenL, the
components (f ields) of the record variable or the database variab.t;:specified by fhe wlth clause can be denoted by their identifier
only, i.e. without preceding them with bhe denobation of t,he enLire
record or database variable. The with clause effectively opens thc
scope containing the component idenfifiers of the specified recorci
or database variable, so Lhat the component identifiers may occur'
as variable identifiers.

Page J 1

Ex ampl es :

with date do
TT"Tonth ='T2 then

begin month l= 1;
end

else frffi't,h : = month+ 1

year I = year + 1

1s equivalent to

if dabe.month = 12 then-- begin date.montfr-Fl; date.year := date.year+1
efiA-

eLsETate.month := date.month+1

with mybusiness,thispart do
TI-- not some o in orders--- lo.Ttemä'äme = ltemname)
then partsI itemname] : =

is equivalent to
if not some o in mybusiness.orders--- lo.TtemEäme = thispart.itemname)
thenmybusinesS.parts[th1spart.itemnameJ|=<>

No assignments may be made in
elements of the with variable
possible to the components of

the qualified statement fo any
list. However, assignments are
these variables.

10. Procedure declarations

Procedure declaratlons serve to deflne parts of programs and to
assoeiate identifiers with them so that they can be activated by
procedure statements.

(procedure declaration) i i: (procedure heading) (block)
(block) ::= (1abe1 declarafion part)

(constant definition part)(t,ype definitlon part)
(variable declaration part,)
(procedure and function declaration part)
(statement part)

The procedure heading specifies the identifier naming the
procäffiäfrä ETä-lFmaI paramenfer identifiers (if any).
The parameters are either val-ue-, variable-, procedure-, or
function parameters (cf. also 9.1.2.). Procedures and functions
which are used as parameters to other procedures and functions
must have value parameters only.

(procedure heading) ii: procedure (i.dentifier) ; i

procedure (identifieFl??67ma1 parameter secLion)
{ ; (formal parameter section) }) i

Page 32

(formal parameter sect,ion> : ::
(parameter group) i

var (parameter grouP)
Tilnction (paramet er group) i

pFöEeäurS (identifier) {,(identlfler) i
<paramGTer gFoup) : :: (identifier){,(identifier)}:

(t,ype identifier)
A parameter group withouf preceding
constituents are value parameters.

The label declaration parL specifies
statEil-ö?iE Tn f,he s€äEefr'e-n[part.

(label declaration part) ::= (empt,y) i

tabel (1abeI) {,(1abe1)i i

The constant definition part contains al-I constant synonym
d e f ii'lTf o n s I oc äT-Eö-The-ffic ed ur e .

specifier implies that lts

all labels which mark

(constant definition part) ::= (empty> i

const (constant definition> {; (constant definition) };

The type definition part confains all type definitions which are
locaT-T6 EEe pr oceduFe-decl aration.

(type definition part) : := (empfy)
i

lype (type definition) {; (type definition> };

The variable declaration part contains all variable declarations
I oc aT-Tö-TFe proc ed ur-e

"-eöfäFatio
n .

(variable declaration part) : : = (empty) i

yar' (variable declaration) {; (variable decLaration.> } i

The procedqrs and function declarat.ign part conLains all
procEdlTE-änd' TurncETonTeö1äFmTons*I6cäT-To the proced ure
declaration.

(procedure and funcLion declaration part) ::=
t(procedure or function declaration> ;](procedure or function declaraLion) : :=

(procedure declaraLion) | (function declaration)

The slatement parf specifies Lhe algorit,hmic actions to be
execüTecf-upon äi activation of the procedure by a procedure
statemenL.

(statement parL) ri= (compound stat,ement)

All identifiers inLroduced in the formal parameter part, the
constant definifion part, the type definition part, the
variable-, procedure or function declaration parts are Iocal to
bhe procedure declaration whictr is called the sc_ope of EEese
j.dentifiers. They are not known outside their scope. In the case
of Iocal variables, their values are undefined aL the beginning
of t,he stafement oarL.

Page -j3

The use of the procedure identifier ln a procedure statement
within its declaration implies recursive executlon of the
procedure.

Examples of procedure declarations:

procedure readinteger (var f: text; var x: integer) ;
vaF-nj :-integer ;
6eein while fl - t I do get(f)i i := 0;

-whTIE-fl

in ['0'-'9'] do
bggln i : =. ord(fl): ord('O r);

i := 10*i + j;
get (f)

snd;
X i= i

end

procedure Bisect(funst_ion f: reali a,b: reall var zi real);
var m: reall
!"-gU tassume f(a) < 0 and f(b)
---while abs(a-b) > 'XE-10*abs(a)

5EE-In m := (a+b)/2.0i
--;!!f(m)<0bhena:=m

eno

plocedure CCD(m,n: int,egerl var x tyrzi integer);
var-frR, b1,b2,c,d,q,r: inG[-eri {m):0, n)0}
Segin {Greatest Common Divisor x of m and n.

Extended Euclid' s Algorithm)
ai := 0; a2:= 1; b1 :=11 b2:= 0;

0]
do

else b ::n
end;
Z 2= m

C i: m; O := n;
while d
Segln {ainm +T1 *n - d,

gcd(c,d) = gcd(m,n)
q := c div d; F i:

a2*m + b2*n - c,
)
cmodd;
:l-Ee - q*bl ;a2 := a2 - q*a1; bz

.l

r
r

z z= b2
y*m + zxn l

91r9-

prgced-ure averageprl"ce(parts: it,ems; var avg: integer);
var a: integer;
E9E3n a := o;

for each p lnavg := a div
snd

= all a1 :: azi a2:= r;
= b1i bl := b2; b2:= r

glrd;
X l= c; Y :: a2;
{ x : gcd(m,n) =

parts: t,rue do B i= a + p.prlce;
size(parts)

Page 3q

10. 1. Sbandard proge9urqs

St,andard procedures are suposed to be predeclared 1n every
lmplementabion of Pascal. Any implementablon may feature
addibional predeclared procedures. Slnce they arer as aII
standard quantlties, assumed as declared 1n a scope surrounding
the program, no confllct arlses from a declaratlon redeflnlng
the same idenLifier within t,he program. The standard procedures
are listed and explalned below.

10.1.1.

put(f)
FLle handling qrocedures

get(f)

reset(f)

rewrit,e(f)

appends the value of the buffer variable fT bo bhe
file f. The effect is defined only if prlor to
execution the predicate eof(f) is true. eof(f)
remalns true, and the valus of f? becomes undeflned.

advances the current file positlon (read/write head)
to the next component, and assigns the value of this
component bo the buffer varlable fT, If no next
eomponenb exisfs, then eof(f) becomes true, and the
value of fi is not defined. The effect of get(f) is
defined only 1f eof(f) : false prlor to its
execution. (see 11.1.2,)

resets the current file positlon to its beginnlng
and assigns to the buffer variable fl the value of
the first element of f. eof(f) becomes false, 1f f
1s not emptyl otherwise fl is nob defined, and
eof(f) remains true.

discards the current value of f such that a neu file
may be generated, eof(f) becomes true.

Concerning the procedures read, write, readln, writeln, and page
see chapter 12.

10. 1 . 2. !ynalnic. allogation pr.o_c_gggr3g

new(p) allocates a nehr variable v and assigns the pointer
to v to the poinfer variable p. If the fype of v is
a reeord type wit,h variants, the form

new(p,L1,...,th) can be used to allocaLe a variable of the
variant with tag field values t1,...,tn. The tag
field values must be listed conbiguously and in the
order of thelr declaration and must not be changed
during execution.

dispose(p' l:oi:"i:;u:1":":::äi*ir"ifii':::":ä |l;,,
used to allocate fhe variable then

dispose(p ,L1, .. . ,tr) with identical tag fleld values
used to ind icäee-:ehät-storage occupiecl
v ar iant i s no longer need ed .

varlable pl
of nehJ Lras

must be
by bhis

Page 35

10.1.3.

L,e t the variables a and z be declared by

a: array Im. .n] of T
zi pacEd arral TT..vl ef T

where n-m): v-u. Then the statement pack(a,i,z) means

fgr i := u t9 v do zLil := s[j-u+iJ

and the statement unpack(zrarL) means

for j := u to v do a[j-u+i] :: ztil

where j denotes an auxiliary variable not occurring elsewhere in
t,he program.

1 0. 1.4. Relation handliqg procedures

The five relation handling procedures 1ow, next, !his, high
and plior select at the most one element from the relation
variable, r, given as the firsb parameter. If the element exists
it is assigned to the second parameter, relem, which must be a
variable of the element type of the first parameter and eor(r)
becomes false; if the element does not exist eor(r) becomes true
and relem remains unchanged.

low (r, relem) selects the element of the relation variable, r,
which has the Jpge_Ft k_e_y- y.qlq.e. The order on key v al-ues
is given by the order on the value set underlying the
key component type; in case of a composite key a
lexicographlc order on the key values is assumed.

next (r, relem) selects the element of the relation variable, r.
which has the key value next hig.he,s! to the current key
value in the variable relem.

firis (r, relem) selects the element of the relation variable, r,
which has fhe keJ Value equal to the current key value
in the variable reIem.

Da ta transfej pressgurgs

hj-gh (r, relem) selects the element of the relation
which has the highest key value.

nrinr (r ea1 t^ --em) se1""t, tf.l" -r",r""a of ühe relation
which has t,he 14e.y. -y-glug_-- neX!- .1_owest to the
rralue in the variable re1em.

varlable, r,

variable, r
current key

Page 36

11 Function declaratlons

Function declarations serve
compute a scalar value or a
activated by the evaluation
which is a constituent of an

t,o def ine parts o f the program which
pointer value. Functions are
of a function designator (cf. 8.2)
expression.

integer) : real I

(function declaratlon) : := (function heading)(bIock)

The funcbion heading specifies the identifier naming the
function, the formal parameters of the funcbion, and the type of
the function.

(function heading) | != function (identifier):(result type); i

function (ldent,ifTäF>-T<formal parameter section)
T;<TErmal parameter section)]) : (resulb type) ;(result type) ::= (t,ype identifier>

The type of the function must be a scalar, subrange, or pointer
type. lrli thin the f unction declaration there must be at least, one
assignment statement assigning a value to the function
identifier. This assignment determines the result of the
function. 0ccurrence of the function ldentifier in a function
designator wifhin its declaration implies recursive execution of
the function.

Ex ampl es :

function Sqrt(x: real) : real I
ila-F-f0;1: real;
Qegin x1 :: x; {x)1, Newtonrs method}

rePeat x0 := x1; xi := (x0+ x/x0)*0.5
ün-TT[-abs(x1-x0) (eps*x1 ;Sffi-: = x0

-gnd

function Max (a:
VE7-T:-?eal; i :
6€in x := a[1]i

for i := 2

!"eil {x =if x
end ;-'
T-x = max(a[
Max := x

end

veccor; n:
i nteger;

tondo
rnax(afTl,...
aIi] t,hen x

1l,...atnl)]

GCD(m,n: integer) : integer;
n=0 then GCD : = m else GCD

rrlL.t-
: = a[

1t)]
IJ

function
@lI
end

i: GCD(n,m mod n)

Page 3'f

f unctlon Power(x: rea)-; y: integer) : r.eal ; ty): 0]Var r^r,z: real; i: integer;
begln w:: x; z i= 1;1 :: y;

whilei)0do
Iggm 1r*1s*rJ) = x ** y]

if odd(i) then z i=z*w;
T-:= i div-[-
t4, :: sqr(w)

end I
TT_= *n*y)
Power : = z

e!d

1 1.1. Standard functions

standard functions are supposed to be predeclared in every
implementation of Pascal. Any lmplementation may feature
additional predeclared functlons (cf. also 1 0. 1.) .

The standard functions are listed and explained below:

11. 1. 1. Arithmet,ic funcfions

abs(x) computes the absolute value of x. The type of x
must be either real or integer, and the type ofthe result is th'e Type ö-f-x.

sqr(x) computes x*x2. The type of x must be either realor intqger, and the type of the result is the-TTpeof x

sin(x)
cos(x)
exp(y) the type of x must be either real or int,eger, andln(x) tne type of the result is reaTl--
sqrt(x)
arct,an(x)

i i t .1 .2. Boolean functions

orjd(x) the type of x must be integer, and the resurt is
true, if x is odd, and-ETEE*otherwise.

eof(f) eof(f) lnOicates, wether t,he fite f is in the
end-of-f ile status.

eoln(f) indicates the end of a line in a textfite (see
c hapter 1 2) .

I eor(r) indicafes, wether the relation r is in the
end-o f-r el at io n s tatus .

I

Page 3 B

11.1.3.

trunc(x)

round(x)

ord(x)

chr(x)

11.1.4.

succ(x)

pred (x)

l'r ansfer f unctions

t,he real value x is truncated
par t, .

the real argument x 1s rounded
integer.

Lo its integral

to the nearesL

x must be of a scalar
char), and the resulb
ordinal number of the
by the bype of x.

x must be of the bype
char) is the character(if 1t, exists).

type (includ ing Boolean and(of type int,eger) 1s the
value x in the set, defined

integer, and the result (of type
whose ordinal number is x

Further standard _functions
x is of any scalar or subrange type,
result is the successor value of x (

x is of any scalar or subrange type,
result is the predecessor value of x
exist,s).

a nd t,he
if it exists).

and the
(if ir

size(re) re is of any relation type and the result is the
actual number of relation elements in re.

12. Input and output

The basis of legible input and output are textfires (cf. 6.2.u.)that are passed as program paramebers (cf. 13.) to a pascal
program and in its envj.ronment represent some input or outputdevice such as a terminal, a card reader, or a line printer. rnorder to facilitat,e the handling of textfiles, the föur st,andardprocedures leac!, wr itg, read 1n, and wr itern are introduced inaddition to-Ile piGEä-ures-gEE ano püE.-TFe textfiles thesestandard procedures apply to-lnust nöT-necessarily represent
inpuL/ output devices, but can also be locar fires. The newprocedures are used with a non-st,andard syntax for bheirparameter lists, aIlowing, among other things, for.a variable
number of parameters. Moreover, the parameters must notnecessarily be of Lype char, but may also be of certain othertypes, in which case fhe data transfer is accompanled by animplicit data conversion operation. If the first parameter is afile variable, then this is the file to be read or writLen.
Ot,herwise, the standard files inpu! and output are automatically
assumed as default varues in tEe cäses oT-?EäTing and writingrespectively. These two files are predeclared as

yar input, output: text

Page 39

TexLfiles represent a special case among file types insofar as
fexts are substructured info lines,by so-caI1ed line markers(cf . 6.2.4.). If , upon reading a textfile f , the file position
is advanced to a llne marker, that ls past the last character of
a 1ine, then the value of the buffer variable fl becomes a
blank, and standard function eoln(f) (end of I ine) vields
the value true. Advancing the-TiTElosTtion ofr'cE more assigns to
fT the first character of the next line, and eoln(f) yields
false (unless the next line conslsts of 0 characters). Line
markers, not being elements of type char, can onry be generated
by the procedure writeln.

12.1. The proqedure read

The following rures hold for the procedure read; f denotes a
textfile and v1...vn denoLe variables of the-Eypes char, integer(or subrange of integer), or real.
'1 . read(v1, ... rVh) is equivalent to read(input,Vl , ...,vn)
2. read(f ,v1, ...,vn) is equivalent bo read(f ,v1); ;read(f,vn)

3. if v is a variable
to v := fl; get(f)

of type char, then read (f,v) is equiv alent

4. if v is a variable of type integer (or subrange of integer)
or real, then read(f,v) implies the reading from f of a
sequence of characters which form a number according to the
syntax of PascaI (ef.4.) and the assignment of thaL number
to v. Preceding blanks and line markers are skipped.

The procedure read can also be used from a file f which
is not a textfile. read(f,x) is in fhis case equivalent to

at. -^+ r/ f \
^ . - r | , 6cu\ I,/ .

la:.

1

2' I!s- I rocedure readln

rea,Jln(v1, ...,vn) is equivalent t,o readln(input,v1, ... rvn)

readin(f ,V1,...,Vh) is equival-enL to

read(f,v1, ...,vn) ; readln(f)
3. readln(f) is eouivalenL Lo

while not eoln(f) do get(f) ;
eeEff l-__

Readln is used to read and subsequentry skip to the beginning
of the next 1 ine.

Page q0

12,3. The procedure write

The following
a tex tfil e; p 1

an expression,

1. write(p1,.
2. write(f,p1

rules hold for the procedure writel f denotes
,...,Ftr denote so-cal1ed ".t16:paFameters, e denotes
m and n denote expressions of type integer.

.. rph) is equivalenb to write(output,p1,...,pn)
,...rph) is equivalent to

wr ite(f,p 1) ; ; writ,e(f ,pn)

3. The write-parameLers p have the following forms:

e :m e:m: n

e represents the value to be trwrittentt on the file f , and m

and n are so-calIed field width parameters. If the value e,
which is either a number, a character, a Boolean value, or a
string requires less than m characters for it,s
representation, then an adequate number of blanks is issued
such that exactly m characters are wriLten. If m is omitted,
an implementation-defined default value will be assumed. The
form with the width parameter n is applicable only if e is of
type real- (see rule 6).

If e is of type char, then
write(f ,e:m)-f s equivalent to
fi :: ' '; put(f)i (repeated m-1 times)
fi:: e;Put(f)

Note: the default value for m is in lhis ease 1.

If e is of type integer (or subrange of integer), then the
decimal represenTäTTon -of the number e will be written on the
file f, preceded by an appropriate number of blanks as
specified by m.

If e is of type rgal, a decimal representation of the number
e is wribten on the file f, preceded by an appropriate number
of blanks as specified by m. If the parameter n is missing
(see rule 3), a floating-point representation consisting of a
coefficient and a scafe factor will be chosen. 0t,herwise a
fixed-point representation wi th n d igits aft,er the decimal
oo ints i s obtained .

"1. If e is of Lype Boolean, then the words TRUE or FALSE are
written on the file f, preceded by an appropriate number of
blanks as specified by m.

B. If e is an (packed) array of characters, then the string e is
written on the file f, preceded by an appropriate number of
blanks as specified by m.

The procedure wriLe can also be used to write onto a file f
which is noL a textfile. write(f ,x) is in this case equivalent
to fT := x; put(f).

r

Page 4 1

12.4. The proceiure writeln
1. wrlt,eln(p1,...,ph) is equivalent bo writ,eln(output
2, writeln(f ,p1,...,Ff,) is equivalent, to wribe(f ,p1,.

,P1r... rPn)

'. rPniwriteln(f)

3. writeln(f) appends a Iine marker (cf. 6.2.4,) to bhe file f.

12.5. Additional procedures

page(f) causes skipping to the top of a ne!.r page, when the
textfile f is printed.

1 3. Programs

{ P"i9al. program has the form of a procedure declaration exceptfor i ts head ing.

(program) i t= (program heading) (block)
(program headlng) ::=

program (ident,ifier) ((program parameters)) i

(program parameters) : :: (identifier) {, (identifier) }

The idenLifier following the symbol program is the program name;1t has no further significance inslde-TE-p'rogram. The program
parameters denote entities that exist outside the program, andthrough which t,he program communicates with its environment.
These entities (usual1y fires or databases) are called
gxlernaI, and must be declared in the block which constitutes
EE'e-brogram like ordinary 1ocal variables.
The two standard files input and output must not be decrared
.("fr12.), but have to uE-TTstea asläFämeters in the program
head ing, i f they are used. The initial ising statements
resel(lnput) and rewrite(output) are automat,ically generated and
rrusL not be specified by the programmer.

Exarnples:

glogram copy(f ,g);var f,g: file of real;
6eein reset(f)l-r ewr ite(g) ;while not eof(f) do

beqln gf := fl; put(S); get(f)
snd

end .

l-

Page 42

program
v€J-r cfi':
5'6Ein---iT'i 1e

!esln

copytext(input,output) ;
char I

g9j eof(input) do

while not eoln(input) do
--EI_" r ead (ch) ; wr iEe (ch)

end I
readlnl wrlteln

end
stq;_*
program copyi tems(mybusiness,orderl ist)
Eype -. {see 6, examples}

item = record end;
businesE--I- oTtabas6.. . enci ;

var mybusiness:-EusIn'ess;
orderlist: file of item;

beg in r evlr ite (ord'eiTisT) ;
with mybusiness do
for each p]n parts: some o

-(p.itemnäil'6-=legjn orderlistT := p;
put(orderllsf)

end
end.

in orders
olTtemname) do

t tl
Irl A standard for implementation and program interchange

A primary motivation for the development of Pascal hras the need
for a poh,erful and flexible language that could be reasonably
efficienfly lmplemented on most computers. Its features hrere to
be defined wibhout reference to any particular machine in order
Lo facilitate the interchange of programs. The following set for
proposed restrictions is designed as a guideline for
implementors and for programmers who anticipate that t,heir
programs be used on different, computers. The purpose of these
standards is to increase the tlkelihood that different
j.rnplementatrons wiIl be compatible, and that programs are
tr änsferable from one installation to another .

Identifiers denoflng dj.stinct objects musL differ over their
first B characters.

Labels consist of at most 4 digits
The implementor may set, a limit
over which a set can be defined.
representation may reasonably be

The first character on each line
inLerpreted as a prinLer control

to the size of a base type
(Consequently, a bit pattern
used for sets.)

of printfiles may be
character with the following

P;: g, u ll .j

mean ing s :
blank

r0t
11r
t+r

Re pr esenta t io ns
should obey t,he

5. lrlord symbols
sequence of 1
They may not

Bl anks, ends
separators.
between any
restriction:
numbers, and

At least one
c onsecut iv e

slngle spacing
double spacing
print on top of next page
no line feed (overprinting)

of Pascal in terms of available character sets
following ru1 es:

- such as begin, end, etc. are written as a
etters (wiEE6üT süFFounding escape characters)
b e used as id enti fi er s .

7.

of lines, and comments are considered as
An arbitrary number of sepanators nay occur
two eonsecutive Pascal symbols with the following
no separators must occur within idenbifiers,
word symbols.

separator must occur between any pair of
identifiers, numbers, or word symbols.

Page 4 q

15. Index

actual parameter
adding operator
array type
array variable
assignment statement
base type
block
c ase I abel
case Iabel list
case list elemenb
case statement
component designator
component identifier
component I ist
component, selection
component type
component variable
compound statement
conditional staLement
con st an t
constant definiüion
constant d ef lnit,ion part
constant identifler
construc tion
cont,rol variable
database component designator
database component idenLifier
database component type
database sec tion
database type
database variable
ciigrt,
d igit sequence
element denotation
element denotation list
elemenL variable
ernpty statement
entire variable
expression
factor
field designator
field id enti fier
field list
file buffer
file type
file variable
final value
fix ed part
for list
for statement
formal parameter section
function declaration
funcfion designator
function head ing

9.1.2
8.1.3
6.2.1
7.2.1
9.1.1
6 .2.3
1n

o.l.z
9 .2.2.2 a nd
9.2.2.2
9.2.2.2
8.
8.
A

8.
6.2.1
7.2
9.2.1
9 .2.2
-
q

10.

B.
9.2.3.3
(.t.t
7 .2.2
6 .2.6
6 .2.6
6 .2.6
7 .2.2

4.

9.t
7.1
a

R

7 .2.2
7.2.2
6 .2.2
7.2.3
6 .2.4
7.2.3
9.2.3.3
6.2.2
9.2.3.3
9.2.3.3
1n

i1.
ö.2
4att.

6.2.2

Page 45

function identi fier
goto statement
identi fier
i f statement
index bype
indexed variable
initial value
key component identifier
I abel
label declaration part
I etter
I etter or d ig it
mult,iplying operator
parameter group
pointer type
poinLer variable
pred icafe
procedure and function
procedure and function

declaration part
procedure declaration
procedure head ing
procedure identifier
procedure or functlon declarabion
procedure statement
program
program heading
program parameters
quantlfied expression
quanblfier
r ecord
record component list
r ecord section
record type
record variable
referenced variable
re1 atlon
rel-ation element
relation element list,
relation element type
relation element type identifier
r e1 ation ex pression
rel" ation key
rel abion type
relaLion update operator
r-el ation v ariable
relational operator
repeat statement
repefitive statemenb
resul t type
sc a1 ar type
scale factor
selected variable
selection
selection expression
set
seL element

8.2
9.1.3
4.
9.2.2.1
6.2.1
7.2.1
9.2.3.3
o.t,)
9.
10.
3.
4.
8.1.2
10.
6.3
7.3
8.1.1
7.3
't 11

10.
10.
9.1.2
1n

9.1 .2
13.
13.
13.
8.1.1
8.1.1
B.
a

6 .2.2
o.z.z
7 .2.2
na

a

R

a

6 .2.5
6.2.5
B.
6.2.5
6 .2.5
9.1.1
7 .2.4
8.1.4
9.2.3.2
9.2.3
't1

6.1.1
4.
7 .2.4
x
e
R

X

Page 46

set element list
set type
s ign
simple expression
simple statement
simple type
special symbol
statement
statement part
string
structured statemenL
structured type
subrange type
tag field
term
t ype
type definition
type definition part
type identifier
unlabelled statement
unpacked sLructures type
unsigned constant
unsigned integer
unsigned number
unsigned real
variable
varlable declaration
v ariable declaralion part;
variable identifier
variant
varianL part
while staLement
r^rith staLement
'';:. th v ariable
witLr variable I ist,

B.
6.2.3
4.
q

9.1
6.1

9.
10.
4.
9.2
6.2
6.1.3
6.2.2
R

A

6.
10.
6.1
Y.
6.2
B.
4.
.t.
4.
7.
"fl.
10.
7.1
6 .2.2
o.z.a
9 ,2,3.
9 .2.4
9 .2.4
9 .2.4

