
Service Trading and Mediation in Distributed Computing Systems

M. Merz, K. Müller, W. Lamersdorf

Hamburg University

Department of Computer Science; Databases and Information Systems
Vogt-Kölln-Straße 30; D-22527 Hamburg, Germany

[merz|kmueller|lamersd] @ dbis1.informatik.uni-hamburg.de

Abstract

The increased availability of global communication
infrastructures allows providers and users of various
application services to cooperate in nearly unlimited
geographic scopes. Problems of heterogeneity and scale
have motivated specific standardisation activities for
client/server "trading" or service "mediation" components.
Motivated by current limitations of the emerging ODP
(Open Distributed Processing) trader, this paper argues
for a broader concept of general service "mediation" as
more appropriate for realistic open distributed
environments. The proposed mediation concept addresses
some of the heterogeneity and flexibility requirements of
open service co-operation by a uniform "Service Interface
Description Language" (SIDL). The goal is to support
distributed application development for a "Common Open
Service Market" (COSM) by facilitating flexible service
selection and client/server interaction.

The paper also presents basic components of a
generalised trading and mediation architecture as well as
the status of a prototype implementation.

1. Introduction

The infrastructure of modern world-wide communication
networks provides the basis for the interconnection and
co-operation of great numbers and varieties of
geographically separated, independent application
components. The predominant structuring paradigm for
distributed applications in such an environment is the
well-known client/server or client/service model which
distinguishes clients and service providers (servers) with
regard to their different roles in distributed application
cooperations [1]. Although this model has proven to be
well suited for cooperation in open distributed systems,
generalisations from small to large-scale open systems seem
to require additional system support.

In general, client/server systems are considered to be open
as long as they interoperate on the basis of agreed (i.e.
standardised) communication mechanisms. From an
application point of view, however, they may still appear
as closed systems whenever specific details of the
respective cooperation partners have to be known in
advance. In order to demonstrate this, a remote "car rental"
server which is accessible via standard "Remote Procedure
Call" (RPC) mechanisms may serve as a simple example:
Besides the use of agreed, standardised communication

protocols, most current implementations of such a
distributed application would require the client application
to have very specific a-priori knowledge of the service
addressed as well as about the related protocol. Approaches
to client/server cooperation in open distributed
environments - as currently discussed in the respective
international standardisation committees (here especially:
ISO Open Distributed Processing, ODP) - address this
problem by making the additional knowledge available
through dedicated "trading" functions; they are, however,
still limited to fairly close (i.e. well-informed about each
other, predefined, or 'standardised') client/server
cooperations.

In this sense, an ODP trading service (as further described
in chapter 2) may perform well for a distributed application
that is closed from an application point of view, i.e. an
application which requires both client and server to be
closely linked together (e.g. by a trader function) such that
they are well-informed about each other. In such
client/server cooperation scenarios as mostly discussed
today, both client and server are expected to have a
common agreement of, e.g., the service (type)
characterisation of the addressed service (e.g. a specific
'CarRentalService' in the example above).

In more general scenarios of dynamically changing,
unrestricted global open communication infrastructures,
however, various and heterogeneous kinds of service offers
and requests may typically arise at arbitrary points in time
and space in a distributed network system. Based on the
assumptions of the traditional service "trading" scenario as
sketched above, this would - for any global trader or
specific client application - mean to have dedicated
knowledge of and agreement with (potentially) all different
service types available in the network. This does not seem
feasible beyond the limitations of relatively small networks
(resp. service) boundaries and would - at least - prevent
new, alternate, competing, or complementary service
providers to enter such a distributed service environment -
to the potential benefit of the clients - freely and with
without utilisation delay.

In order to overcome the obvious mismatch between - on
the one hand side - the flexibility requirements of (client)
distributed system users and - on the other hand side - the
necessity to closely (and correctly!) align suitable
networks components to one another based on agreed
service characteristics and cooperation protocols, a generic
system infrastructure for a "Common Open Service Market"
(COSM) is proposed and presented in this paper. In
addition to the (ODP) trading-oriented cooperation

schema [2], this architecture proposes (and supports) a
user-oriented cooperation schema which allows clients to
stay independent from the details of specific service
providers. In this schema, the human user is directly
involved in (yet unknown) service selection and applica-
tion specific interaction. Based on a common (i.e.
uniformly defined) Service Interface Description (SID), the
proposed open system support infrastructure allows to
automatically generate service-specific client components
like a so-called "Generic Client", a "Service Browser" (for
more details see section 3.2) etc.. In the resulting open
system infrastructure, any appropriate service provider in
the network can be selected in a flexible manner based on
human end-user interaction and supported by appropriate
dedicated system support functions.

Therefore, the basic question addressed in this paper is
how the two alternate approaches to matching client
requests with the 'right' service offers in large-scale open
system environments can be best combined: the basic idea
is to integrate the approaches of - on the one hand side -
(ODP) trader-oriented and - on the other - more flexible
human-oriented, interactive service selection mechanisms
into a common open system support infrastructure.

Accordingly, the rest of the paper is organised as follows:
First, an introduction to client/server "trading" functions
and their limitations is given in section two. Then, ODP
trading is generalised into open service "mediation" in
chapter three. This chapter also reviews and extends some
aspects of a "Service Interface Description Language"
(SIDL) as an adequate uniform service specification
technique for open service trading and mediation in
distributed computing systems. Finally, the last chapter
presents an architecture and the current status of a
distributed prototype system integrating ODP trading and
open service mediation concepts in system support for an
example heterogeneous network scenario.

2. Service trading in distributed systems

Trading is the process of matching client service requests
with corresponding service offers accessible somewhere
within a distributed open systems network. The
specification of a trader function is currently carried out
within the ISO ODP standardisation activities [3].
Therefore, in the remainder of the paper the abbreviation
ODP trader is used for ODP-conform trading services [2]

ExporterImporter

2

3

4

5

1

Trader

Figure 1: AN ODP Trader and Its Users

2.1. Functionality of the ODP trading service

A closer review of the overall ODP trader functionality
shows that a compound trader service is comprised of

different interfaces offered to its different kinds of potential
clients (Fig. 1) [4]. Exporters are service providers which
register their interface in a client role at the trader (step 1)
while importers issue a request for providers of a particular
service (step 2). After an appropriate "best possible"
(according to given criteria) service is selected and one or
more service identifiers are returned to the importer (step
3), a direct binding can be established eventually between
the importing client application and the selected service
provider (steps 4 and 5).

In this triangular relationship, the basic role of the trader is
to provide and maintain means of classifying services by
given service types [5]. Such service types identify distinct
operational interface signatures, characterised by an
interface type, and a predefined set of characterising
attributes (service properties). So, the notion of the service
type plays a central role in an ODP trading context. By
defining an interface typeּand a set of attributes for a given
service, it provides the basis for a common understanding
of the function and semantic of a special service class.
Therefore, a server exporting a service to the trader, always
has to refer to a distinct, predefined service type.

The above mentioned car rental service may also serve as
an example for an ODP trader function. A specific new car
rental service may register its service in an open network
environment by first referring to a (predefined) service type
CarRentalService, which can be defined as follows:

ServiceType CarRentalService {
// Service Attribute Types
ServiceAttributeTypes {

CarModel : Enum { AUDI, FIAT-
Uno, VW-Golf }

AverageMilage : Integer
ChargePerDay : Float
ChargeCurrency : Enum{ USD, DEM, FF,

SFR, GBP }
};
// Service Signature
ServiceSignature {

SelectCarReturn_t SelectCar (SelectCar_t);
BookCarResult_t BookCar(BookCar_t);

}
};

Then, the actual service offer as exported by a particular car
rental service has to specify the values for all attributes of
the service type according to the template given by the
service type CarRentalService, for example "CarModel =
FIAT-Uno".

In general, the computational interface of an ODP trader
provides operations for the export, withdrawal, and
replacing of exported services as well as operations to
retrieve a list of services which conforms to any given
client request, including the possibility to obtain a best-
fi t t ing service according to some given criteria.
Furthermore, a management interface allows to modify the
domain of service offers by inserting or deleting specific
service type entries.

An important advantage of involving a trader function for
service acquisition in open distributed environments lies in
a gain of additional distribution transparency: For
example, a service user in such a scenario is not required to

know about the exporters network address, host type, or
other implementation details.

2.2. Limitations of the current ODP trader

In principle, the concepts underlying the ODP trading
function are well suited in case of services which are well-
established, i.e. those for which their respective
functionality, service type and other characteristics are
well-known (i.e. standardised) to all requesting clients.
Referring to the example given above, that means that an
exporter of a "car rental" service has an explicit knowledge
of the existence of a service type 'CarRentalService'
managed by the trader with prescribed service semantics.
Similarly the importer 'knows' which service type to
specify if a car rental service is required, and further, the
application programmer of such an importing application
knows how to interact with the remote server after a service
identifier is retrieved by the import call.

In reality however, an open distributed computing system
consists of a multitude of individual and unrelated service
offerings from different companies and organisations which
all provide distinct services with individual goals of
gaining profit from their respective usage by external client
applications. The establishment of markets for software
modules and services via "CompuServe" may be considered
as an example for the pace of module and service
proliferation between human clients and "servers".
Generally speaking, from the viewpoint of competitors in
such market scenarios, it is usually rewarding to offer
innovative services before others have already accessed the
market with similar service offerings ("being the first pays
most").

Considering the concepts of ODP trading mechanism in
the light of a realistic open market scenario, trader
utilisation can be even counter-productive for an innovative
and generally yet unknown service provider, for example, if
the new service offer would require establishment (and
registration at the trader function) of its new, dedicated
service type and, therefore an increased time-to-market.

In cases where the visibility of such a new service is not
restricted to a single trader but, e.g., to a trader federation
(as -optionally - envisaged by ODP [2]] for geographic
scopes), the delay and costs of establishing of a new
service type become even less acceptable and more counter-
productive for the service providers and thus the open
market itself.

In summary, in an ODP trader environment as defined
today, obstacles to innovative service establishment can be
characterised by the additional overhead of service
registration and establishment which includes the
following phases:

• service type standardisation (by global agreement),

• service type registration at a trader’s type manager,

• availability of registered services to potential
importers, and

• development of client applications to achieve the
ability to cooperate with remote servers.

Apart from such delays - and additional costs - of a new
server’s (de-facto) availability in open network
environments, the prescription of service functionality -
which is a precondition for service type standardisation -
may, for example, facilitate follow-up competitors to
imitate the innovators service. Taking these phenomena
into account, the ODP trading mechanism as introduced in
section 2.1 has some limitations when applied to open
service environments which have to satisfy, for example,
the requirements of realistic, profit-oriented competitors
planning, e.g., to introduce innovative services easily,
efficiently, with great flexibility, and without
compromising their respective competitive advantages.

Nevertheless, after a time of "maturation" (i.e. after several
other market participants have provided comparable
services) a general standardisation of new service types
may still be desirable and achievable. Therefore, an
additional generalisation from the concept of trading to a
broader concept of service mediation seems appropriate and
is therefore proposed in this paper. It includes ODP trading
as a distinct mechanism for linking importers to exporters
of well-known services. In addition to that, however,
service mediation supports flexible and efficient access to
(yet generally unknown, i.e. not yet standardised) services
in a "pre-tradable" stage of their development. Common
descriptional - and most important - basis for both service
trading and mediation in open systems environments is a
powerful "Service Interface Description Language" which
characterises all necessary aspects of arbitrary
heterogeneous remote services in a uniform way. In this
way, appropriate SIDL concepts also help to protect open
distributed client applications from as many of the
potential server differences (and, in result, access
complexities) as possible.

2.3. Requirements for dynamic access to remote
services

A predominant goal of a system infrastructure to support a
"Common Open Service Market" (COSM) – in the sense
explained above – is to flexibly support innovative
services in order to make them available to requesting
clients and to support client/server interaction at lowest-
possible effort. In this sense, any change of the COSM
configuration is considered a transition effort with related
specific, additional transition costs [6]; for example :

• Making an innovative service available on the market
requires cost of administration and adapter stub
development.

• The utilisation of a new service, or switching between
the utilisation of very similar services may involve
costs of adaptation and configuration. Usually a client
application developer has to re-write adaptation code to
be able to connect to different services since these may
differ in both syntactical and semantical aspects of
their programmatic interface.

• Acting as a value adding service to pre-existing ones
causes transition costs: For example, if there is a
demand for a graphics image server in format X, but a
suitable image server only supplies format Y, it may be
profitable to provide a value-adding service by

converting Y to X. Establishing this service would
first cause adaptation costs at the image server and,
secondly, adaptation cost for the service itself to be
available to potential clients.

• Finally, the set of service attributes and, generally, the
interface description shall be extensible by individual
services without involving a respective adaptation of
remote components. E.g., a group of services may
extend their interface descriptions by supplying an
additional finite state machine specification of allowed
state transitions. If - ideally - there were no adaptation
cost for server-unspecific clients in this scenario, such
an extension would cause no transition costs.

If such transition costs are significantly higher than the
amount that an innovative service provider charges, the
overall service utilisation cost for potential clients becomes
prohibitively high due to a too inflexible system
infrastructure design. In contrast, an appropriate open
distributed system infrastructure also makes newly created
and innovative services fast and easily accessible for many
clients at negligible adaptation costs, thus creating enough
incentive for new, profit-driven suppliers of such services
to the benefits of potential distributed client applications.

Accordingly, the requirements of an open systems
infrastructure that supports service trading and mediation
of innovative services is based on the following key
aspects which are discussed in detail in the next section:

• A uniform service description technique and extensive
use of extensible representations of service interface
descriptions, and

• Provision of specific software components of, e.g., a
"Generic Client " for dynamic service access which
enables and supports distributed application users to
access innovative services in a common way - i.e.
independent of specific knowledge about details of the
remote services.

3. Service mediation in open systems

In a broader sense than the notion of trading, service
mediation is shall denote in this context the general task
of dynamic cooperation support for clients and servers in
open systems. In particular, service mediation does not
depend on a pre-defined service type but rather on human
user service browsing and selection. Accordingly, this
principle will be referred to as browser mediation.

3.1. Service interface description technique

Traditionally, service descriptions are used as an input for
stub code generation as known from several existing open
RPC implementations. In the COSM environment,
however, interface descriptions are regarded as objects
which can be communicated between distributed
application components. This idea allows not only a
dynamic marshalling of transferred parameters, it also
provides a prerequisite for a generic client component (as
presented below) which hides as many differences of
remote services to client applications as possible and, thus,

reduces their respective effort for adaptation to innovative
services substantially.

In summary, a "Service Interface Description" (SID) [7]
can be considered a container for various descriptional
elements for services in open systems, including not only
the respective operation signatures but also additional
information on, e.g.:

• restrictions to legal invocation sequences of service
operations, based on a finite state machine (FSM)
model,

• how to generate an individual user interface at the
client site,

• user-understandable annotations to the SID elements, or
at a later point of time,

• service type information that is required for traders.

For the above mentioned simple "car-rental" example, the
FSM model may, e.g., comprise two different
communication states, INIT and SELECTED, and two
transition operations, SelectCar(...) and Commit(...). In
addition, the service may, e.g., restrict the allowed
transitions to the following list (consisting of tuples of:
'currentּstate', 'allowed transition', and 'resulting state') of:

(INIT, SelectCar, SELECTED),
(SELECTED, SelectCar, SELECTED)
and (SELECTED, Commit, INIT)

So, the FSM specification is a first example for necessity
of optional extensions to a signature-based ('object-
oriented'?!) SID. Consequently, existing SIDL techniques
have to be augmented by, at least, specification mechanisms
for FSM service protocol restrictions (see also [7]).
Additional SID extensions - and corresponding SIDL
extensions - are briefly explained below.

Extended service interface descriptions

In an extended SIDL, a SID should be considered a
communicable first class object. In an example, a SID can,
accordingly, be a data value of, e.g., the assumed type
SIDBASE as defined below: Its type definition denotes the
descriptional elements embedded into the SID; additional
elements of an extended SID represent extensions to the
corresponding type which is then considered a subtype of
the base type SIDBASE:

Let SIDBase = record typespec : TypeSpec_t
opspec : OpSpec_t end;

Let SIDSub = record typespec : TypeSpec_t
 opspec : OpSpec_t

fsmspec : FSMSpec_t end;
let browse = fun ...

As an example, the base type for a service description may
be viewed as a record type, as known, e.g., from
polymorphic programming languages like Quest [8]] or
TL (Tycoon Language) [9]. Such record types comprise
distinct elements like a list of type definitions, a list of
operation signatures, etc.. So, in the example above, a
specific (sub-) type SIDSUB conforms to the base type
SIDBASE in a type-safe way if it contains at least the
elements of SIDBASE, but possibly additional ones as
well. Instances of the extended subtype SIDSUB still

conform to operations that expect instances of the base
type. As far as service descriptions are concerned, the type
extension may comprise an additional element
"FSMDefinition" which contains a finite state machine
specification of allowed server state transitions (see Fig.
2). If a service extends its SID type as shown above and
transfers corresponding SID instances to other components
within the communication environment, these remain
capable of interpreting the SID since it remains conform to
the base type. Only those components, however, which are
capable of processing the more specific SID subtype can be
aware of the respective SID extensions.

SIDBase

TypeDefinition
OpSignatureDefinition

SIDSub

ServiceTypeDefinition
FSMDefinition

Figure 2: Extending a base interface description by

additional elements

So, the introduction of subtype polymorphism into a SIDL
and its application to concrete service specifications
enables individual services (or parts of the service
community) to communicate and autonomously extend a
given base SID to a more specific one. Therefore, extended
SIDL techniques provide a descriptional basis for
generalising 'tradable' services from (only) well-know,
predefined to (also) innovative, yet unknown ones - an
important prerequisite for flexible open service 'mediation'
in realistic large-scale distributed systems.

3.2. Dynamic open service access

Dynamic support for innovative services requires
distinguished access and interaction functions in the
COSM system support infrastructure. Therefore, the two
following aspects of client genericity and dynamic
client/server bindings require particular attention:

Uniform remote service access via generic clients

In order to make as much of the heterogeneity of the
multitude and variety of accessible remote services in open
systems transparent to potential clients, a "Generic Client "
function can now be defined, based on the above
mentioned (SIDL) techniques for uniform extended service
interface descriptions. Generic clients allow human users to
access arbitrary innovative services but still to remain
independent of any given service as far as interface
signatures, interaction modes or human user interfaces to
these services are concerned. So, generic clients allow
applications to generate service-specific components (as,
e.g., user-interfaces, parameter marshalling stubs etc.)
automatically based on their uniform respective SID.
Therefore, an important property of generic clients in a
COSM is a well-defined relationship of linguistic service
description elements to corresponding (graphical) user
interface (Gui) management system (UIMS) components at
the client site (Fig. 3).

SID
Gui Generation

Generic Client Server

SID Transfer

Figure 3: Dynamic Binding to Innovative Services in Open

Systems

Components of SIDL service descriptions like type
definitions, operation signatures and textual annotations
result in respective UIMS components. Therefore,
operation-specific value editor forms can be generated
automatically that allow to present or enter data values (for
an example see also Fig. 7). Other controller elements (e.g.
buttons, list items), that can be activated by mouse events
are related to respective remote operation invocations as
defined in SIDL UIMS descriptions.

Binding support through generic clients and browsers

Since there is no predefined service type for innovative
service classifications, application services register their
SID together with their globally identifying service
reference (and, thus, make it available to clients) at a well-
known generic "Browser" component. The service reference
belongs to a SIDL base type, SERVICEREFERENCE. In
turn, the browser may also act as an application service as
well and register its own SID at yet another browser etc..

When involving a generic client, the supply of a service
reference is required to identify the server to be bound to.
As a SIDL base type, values of SERVICEREFERENCE are
first class objects which can be transferred forth and back
as parameters or return values. Accordingly, the generic
client component provides a distinct UIMS controller
representation to enable human users effecting binding
establishment via user interface interactions. In fact, the
actual binding establishment is made transparent by a
seamless transition between UIMS dialogue interactions
from the users point of view. This basic COSM mechanism
enables a powerful principle of service mediation (Fig. 4):

Gen. Client Browser Appl. Server

1. SID Registration2. Browsing

3. Binding to Server

SIDSIDSID

SID

Figure 4: Bindings between a Generic Client, a Browser,

and an Application Server

As shown in Figure 4, binding via browsers is effected by
obtaining a distinct service reference from the currently
selected entry. In turn, a further binding can be effected out
of the user interface based on this service reference. Each
binding corresponds to an individually generated user
interface. Accordingly, a cascade of bindings and

corresponding userּinterfaces can evolve from several
consecutive binding establishments.

3.3. Benefits and limitations of service mediation

Involving a generic client component based on uniform and
powerful (extended) service descriptions leads to a flexible
client/server support infrastructure. Here, the uniform SID
enables any type of service to "remote control" generic
clients automatically. The only components to be
(application) specifically developed for that are the server
components themselves, and their respective uniform
(SIDL) service descriptions. Therefore, transition costs for
individual participants can be reduced substantially since
there is no adaptation effort required for generic clients;
and service mediation is facilitated by automatic binding
support via service references. The only programming effort
that is left for the distributed application programmer is to
adapt their respective services to the COSM system
support infrastructure.

In summary, depending on the stage of service
standardisation either service mediation supported by
generic clients or service trading may be the more suitable
approach: In a pre-standardised stage - due to the generic
client approach - only browser mediation is possible at all,
which represents a flexibility advantage per se - yet with
restrictions of the descriptive power of the SID and the
components that can be generated on this basis. On the
other hand, a trader may be more appropriate for linking
client and server components together which already have
enough knowledge about each other and, therefore, agree on
a common service type. Here, the compatibility among
services of the same type allows to select a distinct service
based on well-known quality attributes and selection
policies. However, the larger the visibility of a service in
geographic terms is, the more trading service suppliers and,
therefore, standardisation authorities, are involved in
defining a particular service type. In those cases, traditional
service trading in the sense of the current ISO ODP
standardisation seem hardly able to bridge the gap between
fast (innovative) service availability and - eventual -
standardised accessibility.

Consequently, the following chapter presents an integrated
distributed system support architecture and prototype
implementation that combines the benefits of both
approaches.

4. COSM system architecture and
prototype implementation

As stated above, the implementation of an integrated
system support for both service trading and mediation in
open systems requires, first of all, extended SID concepts
for highly expressive, but stillּuniform service type
descriptions. Secondly, its implementation requires specific
system software components (as, for example, generic
client, browsers, graphical user interface generator
components etc. as realised in the current prototype
system) which are based on SIDL technology and provide
the abstract and uniform client application interface for
service selection both in direct (human) interaction with

arbitrary remote service providers (i.e. by service
mediation) as well as - indirectly - with an ODP trader
function, whenever possible.

4.1. Integrating innovative and tradable services

The most interesting challenge for the COSM approach to
system support for open distributed applications lies in an
elegant and cost efficient transition support for innovative
services to become - eventually - tradable, i.e. accessible
and usable via standardised and publicly known instances
of corresponding well-known service types. If, in the above
example, eventually (if at all!) the suppliers of "car rental"
services have agreed on a common functionality of their
respective services offered, the respective service signature
and semantics can be standardised in a respective service
type definition. For the "car rental" service example service
property types as presented in section 2.1 can, for example,
be used as selection criteria for registered services at an
ODP trader function which requires this additional service
type information also to register a service offering in an
appropriate way. At the same time, however, such a service
shall also remain accessible for generic clients in the more
general service mediation environment. Therefore, an
additional SID component is implemented which contains
the required service type description.

The previous chapters introduced SID and SIDL
techniques and concepts in ways which seem most
adequate for supporting very general distributed open
system scenarios. As this approach, however, explicitly
aims at realistic open system environments as increasingly
used and - in part - provided by distributed system
software vendors, the concrete prototype of the COSM
infrastructure as currently implemented and presented here,
tries to integrate - as much as possible - new ('de-facto'
standardised) open system support platforms. In the
context of service trading and mediation in open system,
especially the "Common Object Request Broker"
(CORBA) "Interface Description Language" (IDL) as
recently proposed by the multi-vendor "Object
Management Group" (OMG) [10] seems to have a
potential for playing an important role for future open
distributed application implementations.

Accordingly, the concrete syntax selected for service
interface descriptions in the current prototype system
conforms to (and extends) the OMG CORBA IDL. In this
environment, the SID elements as reviewed and extended
above are embedded as distinguished CORBA IDL
modules with a COSM/SIDL-specific structure. The
example below shows how the embedding of a particular
service signature description can be integrated in a
surrounding framework based on CORBA IDL terms. The
great benefits of formulating service interface descriptions
in terms of IDL embeddings lies in the fact that - despite
of the presented COSM-specific SID extensions - the
original IDL syntax may remain unchanged. In its
framework, optional descriptional elements, like, e.g., the
FSM specification, can rather be embedded into the given
CORBA IDL module structure. In order to incorporate, e.g.,
the subtype polymorphism concepts as presented in section
3.1, IDL interpreters can be extended to recognise only
known module names and skip those that do not bear any

meaning to them. Thus, COSM SIDs remain processable
also by (de-facto) standard CORBA compliant
components, like parsers or interface repositories,
independently of the number an kind of additional
extensions.

The following example shows the structure of a base SID
type that is extended by service attribute descriptions for
traders in open systems:

module CarRentalService {
// the base part:
typedef CarModel_t enum { AUDI, FIAT-Uno, VW-Golf };
typedef SelectCar_t struct {

enum CarModel;
string BookingDate;
... };

interface COSM_Operations {
SelectCarReturn_t SelectCar ([in] SelectCar_t

 selection);
BookCarReturn_t BookCar ();
};

// the extension:
module COSM_TraderExport {

const ID ServiceID = 4711;
const String TOD = "CarRentalService";
const CarModel_t Model = FIAT-Uno;
const float ChargePerDay = 80;
const ChargeCurrency_t ChargeCurrency = USD;
};

... };

Here, the COSM architecture provides a SID extension
COSM_TRADEREXPORT to describe the characteristics of
specific tradable services. The standardisation of a
particular "car rental" service type may therefore require a
set of attributes as, e.g., shown in the example above.

4.2. Prototype implementation

Finally, an overview of the current status of a prototype
architecture is presented as well as the implementation for a
distributed open systems COSM support infrastructure
providing both SIDL-based service trading and service
mediation as well as automatic local (graphical) user
interface generation based on common SIDs and
corresponding generic client and browsing system software
components.

Overall prototype architecture

The overall prototype architecture (see Fig. 6) can,
conceptually, be subdivided into, first, a "User Level"
which contains all application-specific - including
interactive - end user interface components for which
distributed software development, based on (potential)
involvement of all accessible services in open network
environments, shall be supported as much as possible.
Below that level, the "Client/server Level" comprises - on
the one hand side - all (still application-specific) client
application, application server, as well as interactive client
applications. On the other hand, it contains the server
independent generic client resp. service browsing
components required for flexible service mediation in open
systems as described above. Finally, the rest of the
prototype architecture components are those which

altogether comprise the functions of the "COSM Support
Interface": For the "Controlling Level", the ODP trader
function is the most important one addressed so far. Also
additional important system support functions for, e.g.,
distributed "Transaction" or "Activity Management"
would belong to this layer but are - currently - outside the
scope of the ongoing prototype implementation. The
"Service Support Level" comprises "Type" and "Interface
Management", a "Name Server" as well as "Group
Management" and the client/server "Binder" Function.
Finally, the "Communication Level" contains the basic
open communication subsystem. functions as, most
importantly, provided by - standardised - "RPC" and
extended multicast and broadcast functions.

Appl.

Server

Generic

Client

Interface

Browser
Client

Appl.

Interactive

Client

Appl.

Appl.

Server

Multicast/BroadcastRPC

Transactional RPC

Binder

Name
Server

Group ManagerInterface
Manager

Type
Manager

TP-Monitor

Activity Manager
Trader

Client/Service Level

COSM Support Interface

Controling Level

Service Support Level

Communication Level

User Level

Figure 6: Overall architecture of the prototype COSM

support system infrastructure

Prototype implementation

The current version of the prototype was developed on a
heterogeneous workstation cluster, consisting of both Sun
SPARCּstations as well as IBM RS/6000 AIX
workstations. Currently, the Sun RPC interface serves as a
common communication basis. Additional standardised
'middleware' services - as provided on various hardware
platforms by, e.g., the OSF Distributed Computing
Environment (DCE) - are currently evaluated and will be
used as an extended distributed operating and
communication system basis.

Currently, one part of the COSM support system prototype
implementation concentrates on completing the
implementation of the basic functions of an ODP trader
function - closely integrated into already existing flexible
COSM service mediation functions as presented above. At
the end user interface, a first version of the prototype
implementation required client service invocations to
explicitly supply RPC calls with actual parameter values.
In order to support access to such innovative services more
appropriately, the current prototype's generic user interface
automatically generates a typed form for local parameter
entry and analysis (See Fig. 7) [7]. For such a SIDL-based
user interface generation, all necessary type descriptions
can be automatically retrieved from the servers SID.
Accordingly, return values can be presented in the same
way by the user interface. Service invocations which do
not conform to the current communication state (as
specified by the FSM), can also be automatically

intercepted by the generic client and, therefore, already be
rejected locally.

Figure 7: Service description and the resulting user

interface at the generic client site

By involving such a generic style of automatic user
interface generation for remote services, type conformance
between co-operating client and server interfaces is always
given implicitly. Therefore, the prototype also supports the
integration of user interface and service description aspects.
So, developing new server applications just requires to
implement service operations and to describe the respective
procedures by means of the extended service interface
description language: the formal parts as type, procedure,
state, and export description, and, optionally, the informal
part of the user interface description as natural language
annotations.

5. Concluding remarks

The COSM support infrastructure aims at improved system
support for flexible client/server cooperation in modern
distributed and heterogeneous open systems. Specifically,
it addresses problems of matching distributed application
program client requests with arbitrary generic remote server
interface functions as provided at dedicated server nodes
anywhere in an open network environment. The goal here
is not just to support specific client/server cooperations but
rather to design an architecture for service management in
large-scale open systems. The two - principally conflicting
- goals addressed in balance are - on the one hand side - to
keep a maximum of local server autonomy while - on the
other hand side - to reduce service transition costs as
much as possible and thus make flexible decisions to
"make or buy" specific components of distributed
applications feasible and efficiently implementable at all.

The extendibility of the SIDL language as outlined in this
paper leads to scalable and - most important - uniform
formal specifications of any open server's functionality. In
result, an open distributed application support system
implementation based on a COSM infrastructure and SIDL
service descriptions supports client/server cooperation in
ODP by reducing both the complexity of accessing
heterogeneous services in open systems, as well as the
implementation effort required for developing open
distributed applications, substantially.

In addition, as demonstrated in the COSM prototype,
SIDL specifications could also be used for automatic
creation of local human user (e.g. window graphics) or
computer program interfaces to all respective remote
services in open systems and, thus, for supporting
automatic user interface generation in environments of great
multitudes and varieties of potential services accessed.

The specific emphasis of this paper and an important goal
of the COSM design and prototype implementation is to
integrate both well defined and already established
techniques for service trading in open systems (as, e.g.,
proposed by ODP) with new mechanisms for flexible and
efficient client server mediation which are also applicable
for realistic, large-scale open network scenarios where
service providers and user may hardly have any knowledge
about each other. Decisive for the success for such an
integration seems - first of all - the definition of an
adequate SIDL as a common basis for, at least, service
characterisation and request trading in open systems, and -
secondly - the realisation of an integrated architecture for
both service trading and mediation in a common
distributed system infrastructure. The ongoing work as
presented in this papers aims at such an integration both at
a conceptual and at a systems implementation level.

6. References

[1] L. Svobodova: "Client/Server Model of Distributed
Processing", Proc. GI/ITG-Conf. 'Kommunikation in
verteilten Systemen', Informatik-Fachberichte, Springer-
Verlag, Heidelberg, 1993, pp.485-498

[2] ISO/IEC JTC1 SC21 WG7: Trader, WD N7047, ´92

[3] ISO/IEC JTC1 SC21 WG7: Basic Reference Model of
Open Distributed Processing, Working Document
N7053, 1992

[4] M. Y. Bearman: ODP - Trader, in [11], pp 37-51

[5] J. Indulska, M. Bearman, K. Raymond: A Type
Management System for an ODP Trader, in [11],
pp.ּ169–180

[6] M. Merz, W. Lamersdorf: Cooperation Support for an
Open Service Market,, in [11], pp 329-340

[7] M. Merz, W. Lamersdorf: Generic Interfaces to Remote
Applications in Open Systems, in: Proc. Intern. IFIP
Workshop on Interfaces in Industrial Production and
Engineering Systems, North-Holland, 1993, pp.267-281

[8] L. Cardelli: Typeful Programming, DEC SRC Research
Report #45, Palo Alto, CA, 1989

[9] J.W: Schmidt, F. Matthes: Lean Languages and Models:
Towards an Interoperable Kernel for Persistent Object
Systems, Proc. Int. IEEE/RIDE Workshop on Inter-
operability, IEEE Computer Soc. Press, Los Alamitos,
1993

[10] The Common Object Request Broker: Architecture and
Specification, OMG Document No. 91.12.1, 1991

[11] J. de Meer/ B. Mahr/ S. Storp (Eds.): Proc. International
Conference on Open Distributed Processing (ICODP
'93) Elsevier Science Publishers B.V. (North-Holland),
Amsterdam London New York Tokyo, 1993

