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Abstract

Energy consumption in High Performance Computing has become a major topic. Thus
various approaches to improve the performance per watt have been developed. One way
is to instrument an application with instructions that change the idle and performance
states of the hardware.

The major purpose of this thesis is to demonstrate the potential savings by instru-
menting parallel message passing applications. For successful instrumentation critical
regions in terms of performance and power consumption have to be identified. Most sci-
entific applications can be divided into phases that utilize different parts of the hardware.
The goal is to conserve energy by switching the hardware to different states depending
on the workload in a specific phase. To identify those phases two tracing tools are used.
Two examples will be instrumented: a parallel earth simulation model written in Fortran
and a parallel partial differential equation solver written in C.

Instrumented applications should consume less energy but may also show a increase in
runtime. It is discussed if it is worthwhile to make a compromise in that case. The appli-
cations are analyzed and instrumented on two x64 architectures. Differences concerning
runtime and power consumption are investigated.
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Chapter 1

Introduction

The computational needs for science, industry and many other segments is growing since
decades. Long ago the performance offered by a single machine stopped being enough —
computers were clustered to drastically increase the performance. Today supercomputers
consist of hundreds of nodes build in huge racks. The nodes are connected with high
performance networks like Infiniband1 or Myrinet2. To unlock the potential of these
supercomputers applications have to be parallelized. One way to parallelize applications
on a large scale is to use the Message Passing Interface (MPI)3 . The MPI standard
specifies a library that contains several functions to exchange data between processes or
to accomplish collective I/O.

The incredibly high demand for performance in High Performance Computing (HPC)
will most likely not change soon. More performance requires more energy, a costly re-
source. Often the acquisition cost of a supercomputer is caught up by the maintenance
costs after a few years. Hence lately the energy footprint of a new supercomputer plays
an increasingly large role next to the actual performance of the system. The Sequoia
supercomputer currently on rank one of the Top 500 list4 has a power consumption of
7890 kW. Rank two of that list, the K computer, draws even more power: 12659.9 kW
(enough to power more than 10.000 suburban homes). The Sequoia supercomputer is not
only 55 percent faster but also 150 percent more efficient in terms of energy. This shows
that much research in this area is conducted.

Supercomputers are working at maximum utilization most of the time. Sometimes a
few nodes are idle, but modern schedulers do their best to backfill those. This leaves very
little room to conserve energy on an existing system. In desktop computing, especially on
mobile devices, many hardware components are able to adjust their power consumption
to a certain workload. Most of the time these adjustments do not affect the performance.
The system still feels responsive and the user doesn’t even notice that something has
changed. But in High Performance Computing, where every cycle of the central processing
unit (CPU) counts, this is not desired. Automatic changes to adjust to a workload
have a major drawback. The adjustments are always late. If the CPU switches to a
lower frequency because the system is idle, it does that after the system has gone idle,

1http://www.infinibandta.org/
2http://www.myricom.com/
3http://www.mcs.anl.gov/research/projects/mpi/
4http://www.top500.org/
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and not the moment it goes idle. Ideally there shouldn’t be any idle times in HPC,
but this isn’t the case. While the applications running on the cluster do work all of
the time, this is usually not true for every component of the utilized nodes. Scientific
applications usually have different phases during their execution. Input data has to be
processed before the calculation can start. The calculation phase gets interrupted by
communication phases and at last the results have to be written to the disk. During the
I/O or the communication phase the CPU is usually not utilized at full extent. During
the calculation phases on the other hand the network interface controller and disk are
often idle. These are exactly the starting points for automatic power saving in desktop
and mobile computing — but not yet in HPC.

1.1 Approach

Our approach is to switch the hardware into the right (in terms of power consumption)
mode, at the right time (without loosing performance). Briefly worded the approach
is to analyze applications for interesting phases (for example an I/O phase) and then
instrument those in the source code with the result that during these phases power saving
modes are utilized. The analysis of an application can be tricky — especially parallel
applications are sometimes hard to understand. For that purpose tools that visualize the
flow of control of such applications as well as hardware utilization are used.

MPI_Send

MPI_RecvProcess 1

Process 2

Utilization

Frequency

Figure 1.1: Draft of application behaviour to look for in traces.

The tracing tools are thereby used to look for application behaviour similar to that
sketched in figure 1.1. Phases during which the utilization of a hardware component is
low, indicating that it can potentially do the same work in a lower performance state.
This is done with two different applications. Once the interesting phases of those appli-
cations are identified they are instrumented. Instructions are added to the source code
that initiate device mode changes before such a phase starts. Ideally the frequency graph
in figure 1.1 would look exactly like the utilization graph. To control the hardware a
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daemon is running on every node the application is started. The instructions are sent to
that daemon, which then decides if the device mode change can be executed. If another
application requires a higher device mode, the change won’t be executed.

The next chapter will start by presenting some related work in this field. In order to
improve energy efficiency lots of work focuses around the dynamic voltage and frequency
scaling of the processor. The general direction of the presented work is to improve the
prediction of workload. In chapter 3 the different power saving modes of processor, hard
disk drive and network interface controller are described. In the course of that, the
software used to manage the device modes is introduced. Chapter 4 is about the software
suites used for tracing and visualization and lists the test applications that are used in
this thesis. Example traces are used to explain the usage of both tracing tools. After that
the two test applications are traced and analyzed for interesting phases. In chapter 5 the
previously discovered phases of the test applications are instrumented. Two different x64
architectures are used to evaluate the instrumentation. Chapter 6 concludes this thesis
and presents ideas for future work.
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Chapter 2

Related Work

In order to reach exascale computing a lot of research is being conducted. Much of it
deals with dynamic voltage and frequency scaling (DVFS) of the processor. CPU MISER
(CPU Management Infrastructure for Energy Reduction) is a run-time power aware DVFS
scheduler [6]. The scheduling is completely automated and requires no user intervention.
It has as an integrated performance prediction model that allows the user to specify
acceptable performance loss for an application relative to application peak performance.
CPU MISER predicts workload, for example commumication and memory access phases,
and lowers the CPU frequency accordingly. Experimental results have shown that this
can save up to 20% energy with 4% performance loss. Another DVFS scheduler is Adagio
[14]. It is an online scheduler that predicts computation time based on a current stack
trace. It extracts information about MPI calls from that trace and then predicts the
next MPI call. This information is then used for processor scheduling. Adagio aims
for significant energy savings with negligible performance loss (less than one percent).
[5] proposes low power versions of two collective MPI functions that utilize DVFS. In
particular those functions are MPI Gather and MPI Scatter. During these functions
the CPU exhibits computational idle phases. These phases are then used to scale down
the cpu frequency and voltage in order to save energy. The experimental results show
that in case of low power MPI Gather it was possible to save 45.9% energy and for low
power MPI Scatter it was even 55.7%. In [4] the potential of DVFS is analyzed. It is
shown that the potential for energy savings with DVFS has significantly diminished in
newer CPU technologies.

In [15] an alternative Linux CPU frequency governor is introduced. Other than the
common governors ondemand and conservative the pe-Governor uses hardware perfor-
mance counters to make decisions (as opposed to the CPU load). These decisions are
designed to run the workload as power efficient as possible. More precisely the used met-
ric is instructions per memory access. Test results show that the pe-Governor in average
increases the runtime by 1.58% while the energy consumption gets reduced by 2.37%.

4



Chapter 3

Hardware Management

In the first part of this chapter the different power saving modes of processor, hard disk
drive and network interface controller are presented. Further we explain why these modes
are often disabled in high performance computing although they are enabled and used
in desktop computing. In the course of that terminology like Turbo Boost and CPU
governors are introduced. The next part discusses how the energy efficient Daemon
(eeDaemon) can be used to utilize power saving modes via manual code instrumentation
in high performance computing.

Most modern hardware components are capable of changing their performance to
adjust to a certain workload. The benefit of this is to conserve power. The central
processing unit (CPU) has several performance states (P-States) and operating states
(C-States) for this purpose [2]. A CPU P-State represents an operating frequency and an
associated voltage. Increased P-States mean lower operating frequencies and thus lower
power consumption and performance. C-States are another measure to conserve power.
The default operating state is C0 which means that no components of the CPU are shut
down. If the CPU is idle it is possible to gradually turn off more and more components
of the CPU by switching to higher C-States. The downside is that as more components
are turned off the time needed to return to C0 increases.

Hard disk drives (HDDs) offer three different modes. The first mode is active/idle
which is the normal operation mode. The second mode is standby (low power mode)
which means that the drive has spun down and the last mode is sleeping. In this mode
the HDD is completely shut down.

Common network interface-controllers (NICs) can switch between different transmis-
sion rates. If for example the fastest rate is Gigabit Ethernet (1000 Mbit/s) then Fast
Ethernet (100 Mbit/s) and Ethernet (10 Mbit/s) can be used to reduce the power con-
sumption. The power consumption difference of these three modes is however hardly
noticable (around 1 Watt) which makes the NIC the least interesting component to con-
serve power.

In normal desktop computers switching between available performance modes is de-
pending on the workload. The operating system decides which states of the CPU shall
be used at a certain point of time. There are different so called governors which make
different descisions at the same workload [13].

In high-performance computing (HPC) this behaviour is often not desired. When for
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example the HDD enters a sleep mode it would take seconds to go back into the normal
operating mode. In parallel applications this could lead to serious delays and thus these
energy saving features are disabled to maximize the performance.

The eeDaemon allows programmers to directly control hardware by instrumenting
their existing code. This has many advantages and is particularly interesting if the
application has phases during which the CPU is less utilized or the HDD could enter
a sleep mode. Usually the hardware would remain in the mode offering the highest
performance. Using the eeDaemon a programmer can instrument the code responsible
for an I/O phase so that the CPU enters a higher P-State before the I/O phase and goes
back into the fastest P-State after the I/O phase. In the same matter the HDD would
wake up / spin up just in time for the I/O phase and go back to standby afterwards. Of
course these instrumentations have to be in the right place so that the modes are switched
at the right time. This is especially important in case of the HDD where switching modes
needs more time (in contrast to the CPU).

3.1 Introduction to CPU governors

The Linux CPUfreq subsystem allows it to dynamically scale the CPU frequency. The
CPUfreq system uses governors to manage the frequency of each CPU. Different governors
may make different decisions at the same workload [13]:

ondemand The ondemand governor is the default governor and dynamically sets the
frequency based on the current workload. During idle phases the CPU will rest in
the lowest frequency. When the current load surpasses a specified threshold the
ondemand governor will switch the CPU to the highest frequency available. Once
the load falls below that threshold the ondemand governor will switch to the next
lowest frequency and continue to do so until the lowest frequency is reached (if the
load stays below the threshold).

powersave The powersave governor will keep the CPU at the lowest frequency.

performance The performance governor will keep the CPU at the highest frequency.

conservative The conservative governor works like the ondemand governor, based on
the current workload, but it increases the frequency more gradually (decreasing is
the same). The conservative governor only switches to the next highest frequency
(once the load is higher than the threshold) and not to the highest frequency. The
frequency will be continually increased as long as the load stays above the threshold
until the highest frequency is reached.

userspace The userspace governor allows the user to take full control over the CPU and
it’s P-States.

Newer technologies Newer Intel CPUs have a special P-State called Turbo Boost1

[3]. The CPU activates this mode if high load is present and the CPU is running in the

1Newer AMD CPUs have a similar technology called Turbo Core.
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lowest P-State (P0). The Turbo Boost itself has several states depending on the CPU
model. If load is present on every core the Turbo Boost won’t be used, it is designed for
scenarios where some cores are idle and others are under heavy load. In that case the
active cores will be overclocked. The highest Turbo Boost will only be used if only one
core is active and all other cores are idle.

3.2 Manual device state management

eed_client Application1eeDaemon
    Client Application 1 eeDaemon

     ClientApplication 2

eeDaemon
Server

NIC HDD CPU

Figure 3.1: eeDaemon overview

The eeDaemon provides a programming interface to explicitly manage device power
modes by manual instrumentation [12]. It is completely written in the C programming
language and consists of a client library and a server process. The client library offers
the necessary functions to manage the hardware and can be linked dynamically to the
application. A server process must be running on every cluster node running the appli-
cation. The client library sends the information to the server process which then decides
which power state every device should use. This way only the server process must be
executed in kernel space. If more than one application is running on one node the server
process will prevent interferences between the two and use only modes that would not
affect runtime of each application.

Device Modes

The eeDaemon offers 5 different modes that are all applicable to any device [10]:

MODE TURBO Mode marking a very high utilization for the device - device must be
switched to the highest performance mode.
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MODE MAX Mode marking a high utilization for the device - device must be switched to
the high performance mode.

MODE MED Mode marking a mid-range utilization for the device - if possible, device can
be switched to a mid-range performance mode.

MODE MIN Mode marking a low utilization for the device - if possible, device can be
switched to a low performance mode.

MODE UNUSED Mode marking the device as unused - which means a device can possibly
be switched to sleep.

It has to be kept in mind that not every device offers 5 different modes. A common
HDD for example can spin down (MODE MIN) and sleep (MODE UNUSED). But there are no
further performance modes which would map to MODE TURBO, MODE MAX or MODE MED.
Thus all these modes do the same — they wake the disk up if it was previously in
MODE MIN or MODE UNUSED [10].

General Usage

The eeDaemon library interface provides two different methods to initialize an applica-
tion on a cluster. Upon initialization applications have to provide a tag. That tag is used
to register the application at the server and allows the server to tell the running applica-
tions apart. This tag can be provided by the programmer using the function ee init.
However it is important to make sure that the tag doesn’t collide with other applications.
Alternatively the more convenient function ee init rms can be used. This function
reads the tag from an environment variable set by the Resource Management System
(RMS). In our case this RMS is Torque1 and the tag will be set to the jobid specified
by Torque. It is necessary for the server to be able to distinguish the running applications.
Obiviously it’s not desired that application one is able to reduce the CPU frequency while
application two is in a computational phase. That’s why the server only sets a device to
a lower power state if every (registered) application running on a certain node previously
issued that particular change.

Changing the device modes from within the code can be done with the function
ee dev mode. This initiates a device mode change to one of the device modes presented
in section 3.2. The mode change will be initiated without any delay, however the device
may take some time to finish the device mode change. In case of the CPU this is usually no
problem, but a HDD or NIC can take several seconds to change the mode. To cope with
that problem the eeDaemon provides the function ee dev mode in(int device id,
int mode id, int secs) which allows the programmer to specify that a completed
device mode change is needed in secs seconds. If an application is structured in iterations
and one iteration takes 1 second we could call ee dev mode in(HDD, MODE MAX,
100) before the calculation starts to indicate that we need a certain device state in
iteration 100. This could be for example the HDD which is needed for an I/O phase in
iteration 100 but idle in the other iterations.

Before the application exits one has to call ee finalize to properly unregister the
application at the server.

1http://www.adaptivecomputing.com/products/open-source/torque/
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Fortran wrapper for the eeDaemon The eeDaemon is written in the C program-
ming language and thus can only be used in applications written in the C programming
language itself. Many of the scientific applications in which the eeDaemon would be
applicable are written in Fortran. It is possible to call C code from within Fortran
applications. To achieve that functionality a wrapper for the eeDaemon interface was
implemented in the course of this thesis.

Implementation

Listing 3.1: C function prototype of ee init rms

1 /**
2 * Distincts the tag by reading the environment variable containing

the resource
3 * management system jobid.
4 *
5 * Calls ee_init(). See ee_init() for details.
6 *
7 * @param argc Pointer to count of commandline args
8 * @param argv Pointer to commandline args
9 * @param rank Rank for this process, e.g. the MPI rank

10 */
11 void ee_init_rms(int *argc, char ***argv, int rank);

Listing 3.1: C function prototype of ee init rms

Listing 3.1 shows the prototype of the function ee init rms() which is typically
used to initialize the eeDaemon when an application is started by a resource management
system like Torque. To achieve the same functionality in a Fortran application using the
eeDaemon with it’s Fortran-Interface a few more steps are needed. In a C -Application the
needed argument vector which contains the program name and command-line arguments
is directly available. Fortran has no direct equivalent to the C argument vector and thus
the Fortran-version of ee init rms() looks a little different.

Listing 3.2: Interface to ee init rms fortran(), a wrapper for ee init rms

1 INTERFACE
2 SUBROUTINE EE_INIT_RMS (NAME, RANK) BIND(C, NAME=’

ee_init_rms_fortran’)
3 USE ISO_C_BINDING
4 IMPLICIT NONE
5 CHARACTER (KIND=C_CHAR) :: NAME(*)
6 INTEGER (C_INT), VALUE :: RANK
7 END SUBROUTINE EE_INIT_RMS
8 END INTERFACE

Listing 3.2: Interface to ee init rms fortran(), a wrapper for ee init rms

The Fortran interface for the eeDaemon uses a wrapper function as shown in listing
3.2. The function ee init rms() needs the C argument vector only for the program
name, argc is not used. Therefore the Fortran function only has 2 arguments: NAME
and RANK. NAME should be the same as the corresponding argv[0] (in C ) and RANK
should be the rank provided by the MPI library.
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Listing 3.3: eeDaemon initialization

1 call get_command(program_name)
2 program_name=trim(program_name)//C_NULL_CHAR
3 call ee_init_rms(program_name, rank)

Listing 3.3: eeDaemon initialization

Since Fortran 2003 there is a new intrinsic module called iso c binding which
makes it a lot easier to access C code from Fortran. As shown in listing 3.3 line 2 the
string provided by get command() can be passed to a C application as long as the
necessary null character (\0) is appended via //C NULL CHAR. Further usage is not dif-
ferent to C applications using the eeDaemon. The functions in the Fortran interface
eed f have the same names as in C.

This chapter focused on hardware management in terms of power consumption and
performance. Almost every device in a modern computer has its own ways to adjust the
power consumption to a certain workload. It was explained why these capabilities are
disabled (most of the time) in HPC — to avoid negative impact on the performance. The
introduced eeDaemon provides a consistent interface to control the CPU, HDD and NIC
from within an application. The programmer can decide whether or not power saving
modes should be used. This explicit management reduces performance loss while power
is conserved.
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Chapter 4

Phase Identification

The previous chapter focused on device modes and how they can be used. It was de-
scribed how manual code instrumentation can be used to utilize those modes in order to
conserve power. This chapter is about the identification of phases that are suitable for
that purpose. The key for optimal instrumentation is timing. If the correct power state
for a certain phase in an application is applied too late, or too early, the overall result
won’t be better or maybe even worse. To aid in identifying the interesting phases during
the execution of applications two different tracing tools are used. A tracing tool records
information while the application is running and saves this information in so-called trace
files. These trace files include things like function calls, time spent in functions, values
of variables, hardware utilization etc.

An application can be traced synchronously or asynchronously. For example, it is
a synchronous trace to record when a function call starts and when it ends. Those
are two distinct events that also inherit the information how long the function call lasted
(timeend−timestart). Tracing the function calls asynchronously would mean to check every
interval seconds in which function the application is currently working. Periodically
reading and storing the current cpu frequency is asynchronous. The cpu frequency could
also be traced synchronously (every frequency change is one event). The advantage of
doing this asynchronously is that it creates less overhead. Tracing every CPU frequency
change would (in case of a governor that dynamically changes the frequency) create much
more events. Additionally the overhead would be unsteady, there would be phases with
lots of frequency changes, and phases with little to no changes. On the contrary tracing
asynchronously most likely looses information. The frequency could change an unknown
amount of times between two measurung points. Generally speaking the advantage of
synchronously tracing is that no event is missed, but it can create a high overhead.
Asynchronous traces create a controlled amount of overhead, but can be inaccurate.
Asynchronous and synchronous trace files are not incompatible to each other. They can
be synchronized using recorded timestamps.

There are text based tracing tools but also tools that generate more complex data
which can then be visualized with a trace viewer. Text based tracing tools usually
create less overhead and are easier to use and setup. Tools that are able to visualize
the data are more complex but can provide more insight. In this thesis the latter is used.
Having a graphic record of the program execution can also help debugging applications.
Especially in the field of parallel programming understanding the flow of control can be
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complicated. In such a case (instead of manually inspecting the code) looking at the
graphic representation can help to identify problems. Some tracing tools can visualize
trace data while the application is running (online). In this thesis offline trace viewers
are used which visualize the data after the execution.

Theory Tracing applications has various purposes. It can aid in debugging applica-
tions, it can help to identify bottlenecks and it can simply help understanding a program
better. In this work tracing is explicitly used to identify phases that are interesting for
instrumentation. The obvious things to look for are communication and I/O phases. The
knowledge that these phases exist isn’t enough. It is mandatory that the phase is exposed
enough to be instrumented. That means the phases shouldn’t overlap. A communication
phase could be implemented in such a way, that the actual MPI calls return immediately
(non-blocking) and the computation continues with little to no interruption by the com-
munication. The data will be sent through the network in any way, with the difference
that the actual data isn’t tangible for instrumentation if it’s implemented non-blocking.
So one has to make sure that the instrumentation doesn’t have a negative impact on the
performance by ruling out that the computational phase and the communication (or I/O)
phase overlap. For that purpose a visualization of the program execution is very helpful.

This chapter starts with a description of the tracing and visualization environment
that is going to be used. Two tracing tools are presented and by use of example traces
their functionality is explained. In the course of that it is shown how the generated
graphs can be interpreted. In the following section the two applications that are going to
be used in this work are introduced. With the help of the tracing tools phases of interest
in those applications are identified.

4.1 Description of the tracing and visualization en-

vironment

In parallel applications it is sometimes not trivial to identify phases which would be
obvious in serial applications. It is very helpful to have a graphical representation of
concurrent events as opposed to looking at traditional logfiles or the code itself.

For that reason two different tracing tools are used which should help identifiying in-
teresting phases, find problems and evaluate the results. The first tracing tool is HDTrace
which visualizes the MPI communication of different MPI Processes as well as system
information like hardware utilization, power consumption, network and I/O. HDTrace
is licensed under the GPL license and developed at the University of Hamburg in the
department Scientific Computing. HDTrace consists of libraries that generate trace files
and Sunshot which is then used to visualize those traces.

The second tracing tool is Vampir which is a proprietary trace viewer that can visual-
ize trace data of different formats including the Open Trace Format (OTF). To generate
the necessary OTF trace files VampirTrace is used. VampirTrace is developed at ZIH
Dresden in collaboration with the KOJAK project and licensed under the BSD Open
Source license.
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4.1.1 HDTrace and Sunshot

HDTrace consists of several different components (see fig. 4.1 for a selection of com-
ponents used in this thesis) [11]. Especially interesting are the components that trace
calls of the MPI library as well as the Resource Utilization Tracing Library (RUT) and
the PowerTracer. The RUT is used to periodically gather information about the hard-
ware utilization and started as a daemon on every cluster node the traced application
is running. The PowerTracer is also running as a daemon but on the master node on
which no calculation is done. It pulls the power consumption of each node from LMG450
devices. Both the PowerTracer and the RUT store the data in a database. The data in
this database is then used to populate the trace files after the execution. This reduces
the overhead of tracing. In case of the PowerTracer no overhead at all is generated (be-
cause everything is done on the master node). The RUT daemon however does create
overhead, the utilization data has to be sent through the network. This overhead could
be severely reduced by utilizing a service network (different from the network used for
normal applications).

To generate trace files for an application run the application has to be linked against
the libraries of HDTrace. Upon execution the application will then generate 3 types of
files [9]:

.trc The generated .trc files contain the MPI events in XML format. Each rank has
its own .trc file that stores the MPI events that occured during the execution of
the application. To each entry of an MPI event in that file belongs a start and end
timestamp.

.stat These files contain external statistics in a binary format gathered for example
from the Resource Utilization Tracing Library. They are used to store data like
CPU utilization and power consumption. The data is collected periodically (asyn-
chronous) and upon visualization synchronized with the .trc files via timestamps.

.info The .info files contain structural information such as MPI data types.

Once these files are present a project file (.proj) has to be generated. This is done
with a python script (project-description-merger.py) that needs the .info
files as input data. That .proj file can then be used to open the trace with Sunshot,
the trace viewer of HDTrace.

Example Trace

Figure 4.2 shows the main window of Sunshot. To the left one can see the names of
the different timelines. The first timelines are representing the activities of the MPI
library. Each process on each node has its own timeline. In this example one node with 8
processes was used. Below the MPI timeline external statistics from the .stat files are
shown. Hardware components like the main memory, each CPU core, the NIC and the
HDD each can have several timelines indicating their utilization at a certain point during
the application execution. When looking at that data it has to be kept in mind that
the data is collected periodically. This is particularly important for the CPU frequency
timelines. The CPU frequency can change very fast and very often in a short period.
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Figure 4.2: Main window of Sunshot

If such a sequence of frequency changes happens between two measuring points of the
Resource Utilization Tracing Library, and before and after it the same frequency was
used, Sunshot would show a constant frequency for that period of time. In this example
only the average CPU utilization and frequency for all cores are shown, it is however
possible to show the data for each core individually.

Figure 4.3: Detailed info for timeline elements

The elements shown in the MPI timelines can be right-clicked to show detailed infor-
mation as can be seen in figure 4.3. Information like the exact duration, the timestamp
when the function call was executed, involved ranks and files and the exact function name
is shown. For functions like MPI File write it also shows the amount of data written,
the file name and the offset that was used for writing the file.
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Figure 4.4: Main window of Vampir

4.1.2 VampirTrace and Vampir

Vampir is a proprietary trace file viewer that supports different trace file formats. In
this thesis the OpenTraceFormat (OTF) is used [8]. The trace files will be generated if
a special compiler wrapper shipped with VampirTrace is used (for example mpicc-vt
or mpif90-vt). These wrappers then trace user functions as well as MPI events at
execution time and store them in trace files (.z). This naturally causes overhead. In
section 4.3.1 ways to deal with the overhead at execution time as well as exceptionally
huge trace files are presented. Additionally external statistics like hardware utilization
can be integrated (see figure 4.1) using the VampirTrace Plugin Interface [16]. After the
program execution the trace files can be viewed with Vampir.

Example Trace

Figure 4.4 shows the main window of Vampir. To the top right one can see the main
timeline of the application run. It shows a histogram of the time spent per function
group. The window ”Function Summary” shows that in this example 97 seconds were
spent in functions of the application, 91 seconds using functions of the MPI library and
41 seconds were used for the VampirTrace library. The 4 graphs in the top left corner
which are named ”Process 0-3” show timelines of the function calls of each process that
participated in executing the application. Aligned to these timelines in the window below
is an additional chart that in this case shows the power consumption over time. Other
possible charts are for example the cpu utilization or the the cpu frequency over time.
These charts can be shown at the same time.
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Figure 4.5: Zoomed in timeline

Figure 4.6: MPI communication visualized in Vampir

It is possible to zoom in on an area of the main timeline which will affect all other
charts. As one can see in figure 4.5 the power consumption chart is now more precise and
in the process timeline the function names are shown. The areas representing function
calls can be clicked and then show information like call duration, interval, name and
involved processes in the ”Context View” to the right. This is similar to the detailed info
in Sunshot (see section 4.3).

Vampir furthermore visualizes the MPI events. If process one sends data to process
two by use of MPI Send and MPI Recv the two calls will be connected with a black line
in the process view. The relations are also clickable. Figure 4.6 shows such a communi-
cation phase. It can be seen that process three receives data from process one (through
MPI Isend) but process three is further ahead and thus has to wait for process one. As
soon as the call to MPI Waitall finishes process 3 receives the data (the function name
is not shown, because the MPI Irecv call is too short).
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4.2 Test applications

Two different applications were used in the scope of this thesis. One written in C and one
Fortran application. The first application is partdiff-par, a partial differential equation
solver parallelized using MPI. The Fortran application GETM is a scientific model also
parallelized in MPI.

4.2.1 partdiff-par - partial differential equation solver

partdiff-par is a parallel differential equation solver. The program has several input pa-
rameters which allow to use it as a benchmark as well as an application that behaves
very similar to ”real” scientific applications. It is very easy to create scenarios that repre-
sent realistic workload and/or artificial I/O heavy scenarios. partdiff-par uses the Jacobi
method to solve the system of linear equations. The application runs through a user-
specified amount of iterations (alternatively it is possible to specifiy a desired precision
for the result, the calculation will stop if the precision is reached). Each participating
process gets an equal share of the matrix. The matrix is distributed line by line (every
process has one contiguous set of lines). Each iteration consists of a calculation phase
and a communication phase. During such a communication phase the lines needed to
continue the calculation in the next iteration are exchanged. Additionally, the applica-
tion can perform checkpoints which will result in an I/O phase. The checkpoints are
written using MPI I/O functions. MPI I/O provides an I/O interface for parallel MPI
programs. Using MPI I/O is much faster than normal, sequential I/O and also enables
the MPI library to apply further optimizations. During such a checkpoint the complete
matrix is dumped. Every process writes its share of the matrix into the checkpoint file.

Parameters The most important parameters of partdiff-par are listed below:

interlines This parameter specifies the size of the matrix that is going to be solved.
With 1000 interlines a matrix with the dimension 8008 will be calculated which uses
0.513 gigabytes memory. The memory usage of the matrix doesn’t grow linearly
but exponentially with the specified interlines.

iterations Specifies the amount of iterations that will be calculated. More iterations
means a higher precision of the result but also a higher runtime.

checkpoint iterations Specifies the number of iterations before a checkpoint is
written. For example, if iterations is set to 100 and checkpoint iterations
to 40 the complete matrix will be written to the disk in iteration 40 and 80.

visualization iterations Same as checkpoint iterations but instead of
a checkpoint the visualization data is written. Writing this data takes much less
time than writing a checkpoint (because only the matrix diagonal is written). This
parameter will always be set to the same value as checkpoint iterations to
simplify matters.
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Figure 4.7: partdiff-par phases

Phases In figure 4.7 one can see the different phases during execution of partdiff-par.
In this figure only the MPI activities are shown.

Initialization During the initialization phase the MPI library as well as the matrix and
some global variables are initialized. This phase is extremely short and therefore
not interesting for our purpose.

Figure 4.8: Communication during 1 iteration of the calculation phase

Figure 4.9: Communication during 1 iteration (highlighted area in figure 4.8)

Iteration The matrix is calculated spread across the participating ranks. Each iteration
consists of a calculation phase and a communication phase. Before the calculation
starts the different ranks have to communicate with each other to acquire the nec-
essary data for the calculation. The matrix is distributed between the ranks line by
line. A matrix with 8 lines calculated by 4 ranks would be distributed as follows:
line 1-2: rank1, line 3-4: rank2, line 5-6: rank3, line 7-8: rank4. Each rank only
has to communicate with his direct neighbours. In this example rank2 would have
to communicate with rank1 and rank3 after each iteration. The communication
is implemented using MPI Sendrecv(). Figure 4.8 and figure 4.9 visualize that
rank0 and rank7 call MPI Sendrecv() only once per phase because they have
only one direct neighbour to communicate with.
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Figure 4.10: I/O phase of partdiff-par

I/O phase Every <checkpoint iterations> an I/O phase takes place during which
a checkpoint is written. Figure 4.10 shows the MPI calls during this phase as well
as relevant hardware utilization. In that trace the ondemand governor was used
(see section 3.1). Most of the time during MPI File write at calls the governor
set the CPUs to high P-States. This is clearly visible when looking for example
at the graph of timeline CPU FREQ AVG 2 which shows the clock speed of core
two. Notable is that during calls to MPI File close the utilization of the CPU
is at 100% and thus the ondemand governor does not set the CPU to a higher P-
State. That’s because MPI File close is a collective operation and for example
rank0 spends 95% of the I/O phase just with waiting for other ranks to finish their
MPI File write at calls so that they can finish the collective MPI File close
operation. This can be seen in the timelines CPU FREQ AVG 0, CPU TOTAL 0
(utilization of core zero) and the MPI timeline of rank0.

Finalization In this phase the MPI library will be finalized and every rank sends some
data to rank0 which then visualizes the matrix. For the purpose of conserving
energy this phase is not interesting as it’s almost as short as the initialization
phase.
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4.2.2 GETM - General Estuarine Transport Model

The short form GETM stands for General Estuarine Transport Model [1][7]. GETM is
a three dimensional MPI parallelized modular Fortran 90/95 model which can be used
among others to simulate tides for the Sylt-Rømø Bight. GETM requires NetCDF 1

input data and writes the output data through NetCDF as well. NetCDF is a short
form for Network Common Data Form, a set of libraries and a (open, cross platform)
file format to exchange scientific data. GETM comes with several setups. Each setup
represents a different case that is going to be simulated. In the course of this thesis the
setup box cartesian is used. The box cartesian setup can be run sequentially or
parallel with 4 MPI processes.

Phases To identify the phases of interest in this case only Vampir was used. It would
have been possible with Sunshot as well but due to the internal structure of GETM
the written trace files by HDTrace quickly exceed magnitudes that do no longer fit into
the main memory when the trace files are opened with Sunshot. VampirTrace offers
more flexibility in this case. Figure 4.11(a) shows a trace of GETM using the ondemand
governor on one Intel node. The main window shows 2 additional graphs:

intel2 util cpu freq avg 0 the cpu frequency over time.

intel2 power the power consumption over time.

(a) Both the CPU frequency and the power con-
sumption graph are very unsteady.

(b) Calls to save <2d|3d> ncdf interrupt the
calculation in every iteration.

Figure 4.11: Trace of GETM in Vampir (ondemand governor).

Both of these graphs appear very unsteady which is very suspicious. Figure 4.11(b) re-
veals the reason for this unsteadiness. The functions save 2d ncdf and save 3d ncdf
are called frequently. These functions are obviously I/O functions. This is a quite

1http://www.unidata.ucar.edu/software/netcdf/
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unattractive pattern for instrumentation. These calls are very short which causes the
overhead of the instrumentation to shadow the actual gain of executing these phases at
a lower CPU frequency. To the right in figure 4.11(b) some information about one call
to save 2d ncdf is shown. That particular call lasted only 91.9 ms. In section 5.3 the
assumption that it is not feasible to instrument these calls will be validated.

To see how the model performs without tracing it 10 runs with 4 MPI processes on
an Intel node were performed. During these runs the model calculated 10 days of the
input data which are split into 86400 timesteps (iterations). The 10 runs averaged for
about 223 seconds execution time. That is 387 iterations per second. Every 10 iterations
save 2d ncdf is called and every 70 iterations save 3d ncdf which means they both
are executed several times each second. Both of these subroutines end with a call to
nf90 sync (found out after inspecting the source code files save 2d ncdf.F90 and
save 3d ncdf.F90) which synchronizes the NetCDF data in the main memory with
the data on the HDD.
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4.3 Related problems

Using tracing tools to identify phases or just to debug an application can sometimes
be problematic. Naturally compiling and running an application linked against a trace
library causes overhead. More code needs to be executed and trace files have to be
written. This overhead can eventually choke off the benefits of using such tools.

4.3.1 Overhead caused by tracing the application

The overhead that originates from tracing the application calls and writing the trace files
is a serious problem which can’t be ignored. When for example in a trace several calls to
MPI Wait appear to be very long this doesn’t have to mean that these calls have the same
length when executing the application without trace libraries. Maybe these MPI Wait’s
only exist because one process is writing trace files while others have already finished or
didn’t even need to.

Figure 4.12: Trace in Vampir with many flushes (blue areas).

Figure 4.12 shows the master timeline of a Vampir trace with the default buffer size
(32 M). The buffer is used to store all kinds of recorded events. Once it is full the data has
to be written on the disk (flushed). The application ran for 72 seconds and as one can see
much time was spent in calls of the MPI library (red areas). When looking at the process
timeline it becomes clearly visible that between the 25 seconds and the 65 seconds mark
the buffer flushes (blue) of the VampirTrace library stopped being synchronized which
introduced very long calls to MPI Waitall.

Vampir offers some configuration options to cope with the overhead [17]. For instance
it is possible to manually instrument the source code. With manual instrumentation
it is possible to reduce the amount of events that are traced. When less things are
traced, the buffer doesn’t fill up so fast. That way the amount of long buffer flushes
can be reduced. To apply manual instrumentation the application has to be compiled
with -DVTRACE. It can be used together with the automatic compiler instrumentation
or without. To use only manual intrumentation the VT compiler wrapper needs the
option -vt:inst manual. This is ideal to reduce the overhead because it allows to
simply skip the tracing of sections of no interest. This flexibility makes it possible to
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have different tracing scenarios like I/O phases, initialization or calculation and in each
run only the interesting sections will be traced and thus the buffer doesn’t get jammed
with needless data.

Listing 4.1: VampirTrace manual instrumentation

1 #include "vt_user.h"
2 VT_USER_START("name");
3 ...
4 VT_USER_END("name");

Listing 4.1: VampirTrace manual instrumentation

Additionally, it is possible to completely turn off (and on again) the tracing by using
the VT OFF() and VT ON() macros. By default VampirTrace stops tracing as soon as
it’s buffer is full for a second time (flushed once), that means nothing after that point
will be traced. This is often not enough for a complete trace. To change this behaviour
two environment variables can be changed: VT BUFFER SIZE and VT MAX FLUSHES.
To get a complete trace VT MAX FLUSHES must be 0 or something high enough that
VampirTrace doesn’t stop tracing. Unfortunately flushing the buffer takes a considerable
amount of time (the buffer is written to the disk) and is able to ”ruin” traces (see figure
4.12). To guarantee that interesting parts of the trace don’t get interrupted by a buffer
flush it is possible to manually initiate a buffer flush by calling VT BUFFER FLUSH().

Figure 4.13: Trace in Vampir with increased buffer size.

Figure 4.13 shows a trace of the same application with the same parameters as in
4.12. The only thing that has been changed is the VT BUFFER SIZE (from 32 Mb to
768 Mb). As can be seen the time spent in the VampirTrace library has been reduced
significantly which also led to much less time being spent in the MPI library.

4.3.2 Size of the trace files

Another problem similar to the overhead created by tracing applications is the size of the
generated trace files. Depending on the traced application the file size can exceed several
gigabytes very fast. This is a problem for several reasons. On the one hand the trace file
viewers Sunshot and Vampir may not be able to visualize the trace because they can’t fit
the data into their main memory and on the other hand these large files may not even fit
onto the specific HDD (less likely). Most solutions presented in section 4.3.1 also reduce
the trace file size.
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4.3.3 Runtime variations

The previous problems were solely caused by tracing the application. Runtime variations
however also appear when executing the application normally. This is a problem that
affects not only the identification of phases of interest by tracing the application but also
the normally executed runs. The variations go up to 20% which is a serious problem
because it means that the scope of these variations exceeds the expected results. These
variations have many causes. One cause is the usage of the Network File System (NFS).
If an applications writes data on a NFS volume and at the same time another application
is also writing data naturally the results will be different compared to an exclusive access.
This problem can be easily solved by making sure that no other users or applications are
utilizing the NFS volume. But there are also other causes that are not as apparent and
whose impact on the results can only be minimized by repeatedly measuring again and
the elemination of evident outliers.

Figure 4.14: Call to save 2d ncdf which lasted much longer than previous ones.

Runtime variations are not restricted to multi node jobs. Figure 4.14 shows a trace
of GETM during which one call to save 2d ncdf for some reason lasted much longer
than previous and subsequent ones. As so often when one process is spending more time
during a function call than the other participating processes he slows down the whole
process group at the next call to MPI Waitall or similar functions like for example
MPI Barrier.

Tracing and identification of relevant phases was the main topic of this chapter. Terms
like asynchronous and synchronous tracing, text based versus grahpic traces and on-
line/offline visualization were explained. Two different tracing suites were introduced,
both with an offline graphic visualization tool. The usage of both tools was described by
use of the two test applications partdiff-par and GETM. Both applications were analyzed
for phases that can potentially be instrumented by the eeDaemon which is the topic of
the next chapter. The last part of this chapter described related problems that occured
during the usage of the tracing tools.
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Chapter 5

Instrumentation of the Applications

The previous chapter focused on the analyzation of the two test applications partdiff-par
and GETM. This chapter is about the instrumentation of these applications. At first
the cluster on which the applications are tested is described. The next sections focus on
the instrumentation of the phases identified in chapter 4. The eeDaemon is then used to
utilize the present device modes of the test hardware as described in chapter 3.

5.1 Test hardware

The eeClust (energy efficient cluster) consists of ten nodes. Five of these nodes are
powered by an AMD CPU (Opteron 6168 @ 1.900 MHz), the other five nodes by an
Intel CPU (Xeon Nehalem X5560 @ 2.800 MHz). The Intel nodes have 12 Gb of main
memory, the AMD nodes have 32 Gb. Two switches are used for networking. An Allnet
4806W takes care of the service network (IPMI) while a D-Link DGS-1210-48 is used
for all the other networking tasks. The power consumption of every node is measured
through a LMG 450 Power Meter and stored in a database every 100 ms. One NAS nodes
provides the necessary storage capacity for jobs with very large input and output data.
It is important to distinguish between jobs that write on the NAS systems and jobs that
write on the master-node that stores the home directories because their performance is
different which could lead to corrupted test results.

5.2 partdiff-par: instrumentation and measurements

In partdiff-par the I/O phase identified in section 4.2.1 was instrumented. The CPU
was set to MODE MIN during the I/O phase (writing a checkpoint and the visualization
data). During the other phases the CPU was set to MODE MAX. Additionally some tests
with MODE TURBO instead of MODE MAX were made. The runs without instrumentation
were made in four (three for AMD) different CPU frequency settings. Once with the
ondemand governor and for comparability with fixed frequencies set to the minimum
frequency available on the specific node as well as the maximum frequency and the Turbo
Boost (only on Intel). Neither the NIC, nor the HDD was instrumented — doing so could
have saved a couple of watts but we focused on the CPU.
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Table 5.1: Overview of different setups for partdiff-par

jobname interlines iterations checkpoint processes nodes

1 node 3000 40 30 8 intel1
1 node amd 4500 40 30 24 amd1
4 nodes artificial 1500 250 120 32 intel1-4
4 nodes artificial amd 1500 250 120 96 amd1-4
4 nodes realistic 1500 4000 1500 32 intel1-4
4 nodes realistic amd 1500 4000 1500 96 amd1-4

Setups Table 5.1 shows an overview of the different setups that were used for partdiff-
par. Both the 1 node setup and the 4 nodes artificial setup are more a bench-
mark than a realistic scenario that is likely to happen in the real world. However
these are still useful to analyze the behaviour of the application and the cluster. The
4 nodes realistic scenario has a much lower I/O - calculation ratio and can therefore
be considered as a realistic example.

Figure 5.1: Trace of an instrumented 1 node job on an intel node

Trace Figure 5.1 visualizes how the behaviour of the hardware changes (with instru-
mentation) compared to the trace with the ondemand governor shown in section 4.2.1
(Figure 4.10). In area one it is clearly visible that the CPUs remains in the highest
P-State throughout the whole I/O phase although towards the end of it most CPUs are
actually at 100% utilization. This is interesting because the ondemand governor would
interpret that CPU utilization as load and shift the CPUs to lower P-States resulting in
a higher power consumption when in fact, the only thing those processes do is actively
waiting for other processes to finish writing data. This can safely be done in the highest
P-State without loosing too much performance. Area three shows the drastic results for
the power consumption (again compared to the ondemand governor). Lastly area two
shows that during the I/O phase indeed I/O is happening (as opposed to data being
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cached and written later on). That behaviour is not optimal in terms of performance.
The calculation could continue once the checkpoint data is cached (and not yet com-
pletely sent) since the completion of the checkpointing is not actually required for the
calculation.

Figure 5.2: Utilization of the network when writing a checkpoint.

In figure 5.2 it can be seen that during 4-node jobs the data of the checkpoint written
with MPI File write at is sent over the network only during the actual ”I/O” phase
and not cached and sent later (during calculation phases).

Figure 5.3: Length of an MPI Sendrecv call used to exchange line data.

Length of the communication and calculation phase In partdiff-par only the I/O
phase was instrumented. Although communication of the line data between ranks takes
up a considerable amount of time it is not feasible to instrument these phases. A rather
long MPI Sendrecv call (that is used to exchange line data) lasts around 0.1 seconds
as one can see in figure 5.3. This problem also exists in GETM (see paragraph 5.3). In
partdiff-par however with enough main memory (and an appropriate amount of interlines)
it would be possible reach regions where these MPI Sendrecv calls last considerably
longer. Under these circumstances it would be feasable to apply instrumentation to the
communication.
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Measurements (runtime, energy, and power consumption) Every setup was
executed 15 times, after what evident outliers were eliminated. The Turbo Boost results
are sometimes hard to interpret. That is because one has no guarantee that the Turbo
Boost will be used although the lowest P-State is active. That descision isn’t made by
the operating system but by the CPU.
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Figure 5.4: Relative measurements of different CPU settings. Baseline is the fixed maximum
frequency setup. The setup is 1 node (see table 5.1).

Figure 5.4(a) shows how the different CPU settings compare to a fixed frequency
set to 2,8 GHz. It can be seen that the minimum frequency needs considerably longer
(24%) while only 16% power consumption is saved. This results in an increased energy
consumption. The ondemand governor shows an increase in power consumption similar to
the Turbo Boost setup. This indicates that the ondemand governor switched to the lower
P-State and the Turbo Boost was utilized, otherwise the power consumption wouldn’t be
so much higher than the maximum frequency. That drastic power consumption increase
results in a much higher energy consumption although the runtime is only increased by
six percent. The instrumented runs also show an increase in runtime (three percent) but
the by ten percent decreased power consumption outweighs this increase which results
in a eight percent decrease in energy consumption. The jobs for AMD shown in figure
5.4(b) performed different compared to Intel. The minimum frequency (800 MHz) shows
an increase in runtime of 80% compared to the maximum frequency (1900 MHz). This is
more than three times the increase that was measured on Intel. Since the 1 node setup
is very I/O heavy this leads to the assumption that by reducing the CPU frequency also
the memory bandwidth suffers. The results of the instrumented runs match with this
theory.

Figure 5.5(a) visualizes the results for the 4 node artificial jobs. In this setup
the network was utilized during the checkpoint phase. Notable is that the min setup
saved energy although the runtime increased by nine percent. This is not very much
which indicates that utilizing the network doesn’t need much CPU power although the
packages have to be prepared and packed before they can be sent. Since the min setup
conserved energy it isn’t surprising that the instrumented setup was able to achieve the
same.
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Figure 5.5: Relative measurements of different CPU settings. Baseline is the fixed maximum
frequency setup. The setup is 4 nodes artificial (see table 5.1).

The AMD graphs shown in figure 5.5(b) look very different to those in figure 5.4(b).
Reducing the CPU frequency thus doesn’t affect the network performance. That results
in energy savings for both the min and the instrumented setup.
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Figure 5.6: Relative measurements of different CPU settings. Baseline is the fixed maximum
frequency setup. The setup is 4 nodes realistic (see table 5.1).

The runs of the setup 4 nodes realistic of both AMD and Intel are visualized in
figure 5.6. The first thing that stands out is that the runtime of the minimum frequency
settings is much higher than in the previous setups. In case of Intel it shows an increase
in runtime by 82% and for AMD it is with 128% even higher. These runtimes result in
much higher energy consumptions. In addition, it is clearly visible that any setting that
involved the Turbo Boost (ondemand, turbo, instrumented (turbo)) has a much higher
energy consumption. Although the runtime is decreased by five to eight percent the much
higher power consumption (20 to 24 percent) results in around 15% more energy con-
sumption. The instrumented setup looks very similar to the fixed maximum frequency
because the I/O phase is rather short compared to the calculation phase. The ondemand
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governor on AMD performed similar to the instrumented setup and the fixed maximum
frequency. Since on the AMD architecture no Turbo Boost like feature is available this
is as expected.

The ”artificial” setups 1 node and 4 node artificial showed savings in energy
consumption of five to eight percent. The ”realistic” setup showed similar results to the
fixed maximum frequency. This was expected since the share of instrumented execution
time was very small in this setup (much computation). This doesn’t mean, that in ”real-
istic” cases nothing can be saved. There are certainly applications that perform relative
amounts of I/O or communication closer to the artificial setups. In these I/O or commu-
nication heavy setups potential savings with only reasonable performance loss exist. The
Turbo Boost has proven to be very inefficient for our setups. Although sometimes the
runtime was decreased, that gain was outweighed by the much higher power consump-
tion resulting in an increased energy consumption. In serial workload however, where the
load is distributed very uneven, it may be worth using the Turbo Boost. The used AMD
architecture wasn’t suitable for I/O instrumentation. The huge decrease in performance
caused by using the highest P-State leads to the assumption that the memory bandwidth
is decreased along with the CPU frequency.
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5.3 GETM: reorganization of ncdf sync

As presented in section 4.2.2 the structure of GETM s phases is unfortunate for the
purpose of this thesis. The naive approach to just instrument the calls to ncdf sync
which undertake I/O and thus don’t need much CPU time fails because there are simply
to many calls in short periods.

Table 5.2: Overhead caused by instrumentation of the CPU (10 runs each, one Intel
node). During the instrumented runs the 4 idle cores were set to the highest P-State.

setup runtime power energy

default 222.673 s 221.194 W 48524.8 J
instrumented 245.016 s 217.272 W 56230.5 J

Overhead Table 5.2 shows that indeed the overhead is too large when instrumenting
the I/O phases in GETM. Although the mean power consumption is slightly lower (about
4 W) the runtime increase (10%) is just too large and causes the overall consumed energy
to rise severely.

(a) Complete run of GETM (b) Zoom in on I/O phase

Figure 5.7: Trace of GETM with reorganized ncdf sync in Vampir

ncdf sync only every 24 hours (model time) Calling ncdf sync that often
makes sense to a certain degree. If the program execution crashes due to hardware
failure or something similar, the data should be unaffected since it is already written to
the disk. This makes it possible to restart the calculation at the last time ncdf sync
was called and only very little calculated data could be lost (at most data of 9 iterations).
The question arises if it is really necessary to sync that often. At this point one has to
weigh things up. For testing purpose the save 2d ncdf and save 3d ncdf routines
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have been modified to only call ncdf sync every 24 hours (model time) which then are
instrumented to run at the lowest CPU frequency possible.

The impact of this modification together with the instrumentation becomes clearly
visible when looking at traces of this version. Figure 5.7(a) shows a much more plain
pattern and less unsteadiness in the charts. In figure 5.7(b) it can be seen how the power
consumption drops along with clocking down the CPU.

Table 5.3: Measured values for new version (10 runs each)

setup runtime power energy

default 64.6035 s 195.594 W 12612.2 J
instrumented 64.0554 s 196.412 W 12559.7 J

Table 5.3 shows the measured values (power consumption, runtime and energy con-
sumption) for the new version (sync every 24 hours). It can be seen that there is no
longer an overhead between the instrumented and the default version. However there
is also no measurable gain in energy efficiency. This is due to the fact that now that
the call to ncdf sync only happens every 24 hours (model time) the overall time spent
with I/O is too low in contrast to the time spent with communication and calculation.
Nevertheless it is remarkable how the runtime has changed towards the old version. It
now averages at around 64 s as opposed to 222 s (see table 5.2).

The original internal structure of GETM was unsuited for instrumentation. The
amount of iterations per seconds was too high — the overhead worsens the results. Re-
organization of the I/O phase decreased the runtime, created a better suited structure
for instrumentation but also decreased the relative amount of I/O in one execution of
GETM. There is no longer an overhead due to instrumentation, but the results are not
measurable. It is likely that setups other than the used box cartesian have longer
communication phases. The biggest constraint is that only 4 MPI processes could be
used. More processes would mean longer communication phases.

This chapter applied the techniques presented in chapter 3 to conserve energy during
the phases identified in chapter 4. The results show that reducing the CPU frequency on
the used AMD architecture isn’t feasible during local I/O phases. On the Intel architec-
ture however this showed the best results of all three used setups (up to eight percent).
During communication phases however it was possible to conserve energy on both ar-
chitectures, but not as much as during the local I/O. This indicates that the process of
preparing the data before it can be sent utilizes the CPU more than I/O. As for GETM,
reorganizing the I/O phase resulted in theoretical savings, unfortunately nothing mea-
surable. The I/O phase duration was too short compared to the time spent in calculation
phases. Executing GETM on a larger productive cluster however should show measurable
results as only 4 processes don’t introduce long enough communication phases.
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Chapter 6

Conclusion and Future Work

This thesis focused on improving the energy efficiency by using idle and performance
states of hardware. In HPC performance is no longer the only important metric, energy
efficiency plays an increasingly large role. Newer supercomputers not only surpass their
predecessors in terms of performance but also in energy efficiency. As can be seen in
mobile and desktop computing much power can be conserved when the system is idle.
Because in HPC slowing down applications isn’t desired, functionalities that automati-
cally use these power saving modes are usually disabled. In HPC most of the time only
one application per time is running on one node. Therefore one can be relatively sure
that during phases that stress the HDD or the NIC the CPU is not working at maximum
capacity and can potentially perform the same work in the same time with a lower oper-
ating frequency. Such phases were instrumented in this work using the eeDaemon with
the result that the CPU switches to a lower frequency. In order to analyze applications
for interesting phases, and to verify that the instrumentation works as intended, tracing
tools can be used. Two graphical tracing suites were used for that purpose. The instru-
mentation and tracing was carried out on two different applications (one written in C
and one in Fortran) and on two different x64 architectures.

With manual instrumentation of high performance applications it is possible to con-
serve energy by using device idle states without harming the performance too much.
The looked-for opportunities to utilize these idle states can be identified with the help
of tracing tools. Although the overhead of tracing applications can be challenging, the
gained insight proved to be very valueable. The identified phases were successfully instru-
mented and it was possible to conserve energy. However there are things to look out for;
in our case instrumentation of the I/O phase was counterproductive on the used AMD
architecture. The increased performance when using the Turbo Boost did not justify the
severely increased power consumption. To conclude, utilizing idle and performance states
with code instructions is a powerful measure that can be worth the effort; but thorough
evaluation is very important — if the instructions don’t fit to the program’s phases the
results can be awfully bad.

Future work includes evaluation of the presented methods on larger clusters and the
instrumentation of NIC and HDD. Our test applications are not optimal for the test
cluster. It would be advantageous to test partdiff-par and GETM on a larger productive
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cluster. Executing applications with thousands of processes also introduces much longer
communication and I/O phases — these are the bottlenecks that work against scalability
of parallel programs. In theory, this promises good results. Furthermore, applications
that exhibit longer, more complex communication schemes can be evaluated and the poor
I/O performance of the used AMD Magny-Cours architecture in higher P-States has to
be analyzed.
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