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Zusammenfassung: In diesem Beitrag analysieren wir das prominente Emer-
gent Polarity Model (EPM) von Eric Cederman von einer Meta-Perspektive.
Wir variieren dazu die Modellparameter über einen großen Bereich hinweg, um
so zu konkreten Modellinstanzen zu gelangen. Wir haben dann die Sensitivität
in Bezug auf eine Veränderung dieser Parameter untersucht.

Wir können die Ergebnisse folgendermaßen zusammenfassen: Die Tendenz
des Modells, Staaten zu größeren Einheiten zusammenzuschließen, erweist sich
als sehr robust gegenüber einer Variation der Modellparameter. Weiterhin ist
festzuhalten, dass ein größere Anzahl an Konfiguration so gut wie keine staaten-
bildende Dynamik entfaltet. Dies ist ein Hinweis darauf, dass die Parameterw-
erte nicht nur einen quantitativen, sondern auch einen qualitativen Effekt be-
sitzen.

Die sich anschließende Forschungsfrage lautet daher, wie jene Konfiguration
zu charakterisieren wären, die zur Staatenbildung führen und wie man diese
von den anderen abgrenzen kann. Eng verbunden damit ist dann die Frage, in-
wieweit diese Eigenschaften der Modellkonfigurationen in Bezug auf die Empirie
zu deuten wären.
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Abstract: In this contribution we analyse the prominent Emergent Polarity
Model (EPM) by Eric Cederman from a meta perspective. We vary the model’s
“magic” numbers over a wide range of plausible values to obtain concrete model
instances of the EPM. Then we studied the sensitivity of the simulation dynamics
with respect to variation of these configuration settings.

We can cautiously summarise these results as follows: The model’s tendency
to decrease the number of states in the long run is quite robust against variation
of configurations. But on the other hand one can see that a majority of config-
urations tends to produce no nation development process at all: The number of
states does not decrease significantly. Therefore, we obtain clear evidence that
not all configurations lead to nation building while others do.

The subsequent research question that now arises is whether we can charac-
terise those configurations that lead to nation building. And, assuming that we
can identify coditions that separate these “effective” configurations from “inef-
fective” ones, we ask wehether these conditions can be interpreted with respect
to empirics.
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1 Introduction

Simulation has been established as research area within the social science, at
least as a complementary methodology. The very early beginnings have their
origin in the 1970’s, among them the Club of Rome studies of the world economy
or Schelling’s model for ethnic residential segregation to name only some (For
an in-depth presentation of the historical development we refer to Gilbert and
Troitzsch, 1999). Maybe the shift from e.g. differential equations to agent based
models (the work of Epstein and Axtell, 1996 has to valued here) has popularised
the approach for a broader audience.
Social models in combinations with nowadays computers allow for experi-

ments that are out of reach for social scientist as one can set up artificial sce-
narios, test the consequences of different regulatory measures etc. We refer to
(Edmonds and Meyer, 2013) for a in-depth presentation of simulating social
complexity.
While the potential is clearly high there has been a long on-going debate

about the scientific nature of simulation in general and the the status of models
in particular. We come back to this point later in more detail, but some of the
critics goes into the direction: “The model has too many arbitrary design choices
and the model’s predictions are too abstract and therefore hard to compare
with empirical observations.” One may argue that some critics is rather unfair,
because even the simplest model exhibit a behaviour that is beyond the scope
of a pure Gedankenexperiment. This is for example the case when we step
away from dyadic interactions to situations with more actors that interact. But
maybe the critics origins from the fact that simulation is no longer descriptive
per se, but comes with a claim to predict and, even worse, to explain. Maybe
this imposes too great demands on the preciseness of simulation outcomes, since
it places social simulation right besides the mathematical models of science.
We like to take a pragmatic position here: A model is interesting whenever it

likely captures a key feature of reality. The natural question, which immediately
arises, is how we can measure this quality aspect of a model?

2 The Nature of Models: Black-Box vs White-Box

The pragmatic position taken here: “A model is interesting whenever it likely
captures a key feature of reality, e.g. one underlying mechanism.” seems a quite
humble position, but it poses quite a challenge, which is hidden in the small
word “likely”. How can we gain confidence that our model really captures a key
mechanism? The first obvious answer might be to compare the predictions to
empirical data and then let statistics take over. From a scientific point of view
this is a black-box position since we consider all models that are, more or less, in
accordance with reality as equivalent to each other. Maybe Occam’s razor helps
us to rule out some of them (i.e. those models that contain more complicated
assumptions); but besides this we do not judge on models.
From a philosophical point of view this seems to be neat and clean, but

we argue that this way of thinking about models has a blind spot: Even the
simplest models tend to have several parameters. We find them in formulations
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like “Whenever the internal state value x of the agent is twice as high as all
the x-values of his neighbours, then he performs action a.” The nature of these
parameters is ambivalent: On the one hand one needs them to calibrate the
behaviour of model such that it becomes “near” to reality; but on the other
hand the model might suffer from over-fitting, whenever the parameter space is
huge enough to approximate almost any desired behaviour. The most extrem
situation arises whenever the model shows the expected behaviour for a certain
parameter value (the magic number) but a quite different one for other choices.
Then our observation is – most likely – a pure artefact and its explanatory value
typically tends to zero.
Of course the problem is not a new one and checking simulations is a common

task (cf. Galán et al., 2013). But there is one point we like to emphasise here:
The development process of a model involves at least three different roles: the
domain expert, the modeller, and the programmer. In the first phase the do-
main expert and the modeller have to transfer aspects of the social setting into
a (semi-)formal model; in the second phase the modeller interacts with the pro-
grammer to obtain an operational version of the model. Of course, both phases
have a risk for errors and misunderstandings, but in our perception the literature
concentrates more on the second relationship: To ensure a high quality of the
operational version this phase adopts best-practices from software engineering,
like verification and testing. But, the first relationship is much more subtle.
One of us, Michael Köhler-Bußmeier, has a background in social modelling: So-
cionics. One of the central aims of this research program (run as a DFG-SPP
from 1999 till 2006; cf. v. Lüde et al., 2003, 2009) was to incorporate social the-
ory in multi-agent systems to improve their scalability, i.e. agent-systems should
inherit beneficial mechanism of social systems to cope with a great number of
agents having to coordinate within a changing environment. While this idea
seems to be quite convincing at first sight the research soon realised that there
is quite a gap between the social theory (whatever this might be) and a model
capturing the concepts in a way that is appropriate for an incorporation within
agent systems. This gap always imposes a temptation for the modeller to fill this
gap by bridging (or even ad-hoc) concepts, which opens the door wide for the
criticism of arbitrariness; and even worse this might be the source of artefacts
as we have discussed above. Unfortunately in many cases the domain expert is
not of much help in this situation, since it is usually unclear from the domain
point of view how an “good” or appropriate bridging concept looks like; or the
domain expert cannot oversee the subtle differences of expressing it – or both.
Maybe we should have not formulated the situation in such a negative manner:

It is rather not a deficit that the first phase fills the gap between description and
the model; quite the contrary – this is of the main purposes why one builds a
model. It is a kind of hypothesis test. But of course we have to control that the
new bridging elements do not a constitute a new theory on its own superposing
– or even dominating – the “real” dynamics of model.
In the following we discuss how this evaluation can be undertaken and, even

better, how the this evaluation can be lead to fruitful discussions and insight
for the domain expert.
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3 Meta-Analysis of Models

In principle we demand for a comparison of different models with respect to their
design choices. When taking the black-box view on models this is of course not
possible.
From an abstract point of view we like to compare a modelM with a compet-

ing modelM ′. We might assume that whenever the models are similar1 (i.e. the
bridging concepts are similar) also the simulated dynamics when starting in the
initial state x0 – denoted D(M,x0) – is similar. In other terms: We expect
a continuity (in the mathematical sense) of the behaviour with respect to the
modelling decisions. Putting it into formal notation, we expect:

M ≈M ′ implies D(M,x0) ≈ D(M ′, x0) (1)

This expresses the fact that our model is robust with respect to our design
choices, since similar choices have similar dynamics. This kind of robustness
indicates that we really capture the essence of a mechanism and not producing
an artefact which relies on a fragile combination of magic numbers, i.e. the
worst-case scenario for a researcher since it completely spoils any conclusion
drawn from the model.
A note on our notion of robustness for those familiar with mathematical

analysis of model dynamics, especially its phase space. Our notion of robustness
is a concept on the meta-level since it compares different models, while typical
concepts of robustness aim at different initial configurations x0. The difference
can easily be identified using the formal notation where “normal” robustness
could be formulated as follows

x0 ≈ x′0 implies D(M,x0) ≈ D(M,x′0) (2)

In other words we are using different spaces: Normal robustness compares
different initial states of the same model, while meta-robustness compares dif-
ferent models. The problem to analyse meta-robustness seems to be far more
complex than the normal one since the space of all possible seems to be less
accessible when compared to the space of initial configurations.

3.1 Meta-Models, Parametrised Models

The mathematically inclined reader might wonder whether the similar definition
of robustness and meta-robustness allow for similar analytical techniques. To
give an answer we have to first observe that the dynamics D(M,x0) depends on
two quite different arguments. While a configuration x0 is usually from Rn, i.e. a
n-tuple of numbers, the structure of all models M is not that nicely structured.
This difference directly leads to fact, that similarity of configuration can be
easily formalised (e.g. as the euclidean distance), while this does not hold for
similarity between models.
We formalise model distances the following way. First, we make the assump-

tion that all design alternatives can be expressed in such a way that they are

1Let us postpone the problem how to express a distance between models for the moment.
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instances of a generic design. Of course this meta-model has to be quite generic.
Consequently, the complete model M is a instance of generic modelM that is
parametrised with the meta-configuration of parameters α – which is typically
a tuple of numbers:

M =M(α)

Since there is a one-to-one correspondence between meta configuration α and
the model inducedM(α), we even consider α as a model wheneverM is fixed.
As a first benefit the definition of model similarity comes almost for free: We

can use this meta-modelM to express the similarity of models (i.e.M ≈M ′) as
the similarity of meta-configurations of parameters α. ForMi =M(αi), i = 1, 2
we define:

M1 ≈M2 if and only if α1 ≈ α2 (3)

Since M(α) is a normal model it could be equipped with an initial configu-
ration x0:

M(α;x0) := (M(α))(x0) (4)

This notion expresses the fact that α and x0 are on different levels, but tech-
nically they act as variable parts of the meta-modelM.
Using these meta-level notions our definition of meta-robustness in (1) could

be reformulated as follows in a conceptual very simple way. A model is robust
with respect to modelling decisions whenever the following holds:

α ≈ α′ implies D(M(α;x0)) ≈ D(M(α′;x0)) (5)

Sometimes it is interesting to ask about the oposite implication, i.e. the ques-
tion whether similar dynamics can be traced back to similar configurations α.
But, in general, this would hold only for very simple models.

3.2 Cluster Analysis of the Meta-Space

It remains to reflect on the notion of similar dynamics, i.e. situations where
D(M1, x0) ≈ D(M2, x0). We try to avoid to represent the whole dynamics as a
function over time. Instead, we assume that the dynamics can be understood by
indicator values, which have to be chosen by the modeller. Then, a simulation
can be understood by its “foot print”, the tuple of all indicator valuesX, which is
a value from Rn for some n. In this case we can describe similarity of dynamics
by e.g. the euclidean distance of indicator variables.
Figure 1 shows an visualisation of this idea for n = 2 indicator variables.

Therefore, each simulation run is characterised by a point in the two-dimensional
plane. From a first look one can hypothesise that the simulation exhibits two
classes of behaviour: one that is characterised by indicator values roughly around
the point c1 = (0.2, 0.25) (i.e. the lower left cluster) and another one that
is characterised by indicator value around c2 = (0.6, 0.7) (i.e. the upper right
cluster). We find that the pure existence of different classes of behaviour that can
be observed by a variation on the design configurations α provides a meaningful
insight, which leas us to the next section.
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Figure 1: Plotting Simulations in the Indicator Value Plane

Up to now we have been interested in robustness of a modelM(α;x0) when
varying its design decisions, which are expressed by α. Our motivation was the
heuristics that a robust model does not produces artefacts and therefore likely
captures the essence of the mechanism under consideration.
But usually a model is only robust locally around a configuration α, i.e. there

is a locality around α1 and also locality around another α2 where both systems
are robust, but their dynamics D(M(αi;x0)) might be quite different. Identi-
fying these clusters of configurations with similar behaviour can be done with
approaches from the area of machine learning (cf. James et al., 2013).
Whenever this happens it shows that our model is very interesting from an

epistemic point of view. Assume the following: The model is quite robust locally
around α. It exhibits a dynamics D(M(α;x0)) that is more or less assumed by
the domain expert. But for another configuration α′ the dynamics D(M(α′;x0))
is unexpected. This unexpectedness is wonderful situation as it shows that even
the domain expert does not understands the system being modelled completely.
At this point knowledge “flows” from the modeller to the domain expert, while,
normally, knowledge is transferred from domain expert to the modeller. Thus,
modelling provides a real benefit for the domain expert.
This kind of scientific approach has to identify clusters of parameters each

having a similar dynamics, but being different from the others. Along with this
comes the question about the borderlines between the clusters, as they indicate
critical configurations, i.e. tipping points. The knowledge about the tipping
point is essential when modelling has the purpose to give advise e.g. to political
decision makers. In this case decision makers can try to directly influence the
“rules of the game” (i.e. the α) to direct the system into a different cluster.2

2Note, that our setting does not supports a change of the configuration α. Therefore, the
actions taken to modify α have to be part of a more general model. We do not deepen
this aspect here.
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4 Case Study

After setting out the conceptual background of our approach we like to present
a model that acts as our show case. We have chosen the prominent Emergent
Polarity Model (EPM) by Cederman (1997), a model that aims at explaining
how states and nations develop and dissolve.3 This model is well-known in the
community. The model encompasses several aspects, like resources, aggression
types etc. with a non-trivial rule set. It is therefore not that clear what kind of
dynamics has to be expected by the simulation. Of course, many design decisions
of the operationalisation can be questioned. But the central point is whether
these decisions affect the behaviour in general.4 This general problem has also
been discussed by its author himself: “Parameter sensitivity poses the most
serious threat to cas-based research. [...] [T]he Achilles’ heel of fragile results
remains, but its consequences can fortunately be mitigated.” (Cederman, 1997,
p.64)

4.1 The Emergent Polarity Model (EPM)

We assume that the reader is aware of the general setting of the Emergent Po-
larity Model (EPM) and recall the model very briefly (Cederman, 1997, p.64ff).
The actors of the EPM are located on a 10 × 10 chess board. Each actor

communicates only with its direct neighbours. Each state starts on one square
only (its capital city). At the beginning of the simulation each state is assigned
an amount of resources (on average 50 units with a variation of ±20). Each
actor is either of type predator or of type prey. Actors of type predator will
attack its neighbour whenever it feels superior, i.e. when the ration of resources
is greater than a constant (in the EPM this constant equals 3). Such a power
struggle is resource intensive for both: attacker and defender. The actor that
possesses more resources emerges victorious from the conflict. The inferior actor
looses the square under attack. The superior actor usurps this square as a new
province.
Each simulation last a fixed number of rounds. Each round is divided into

three parts:

1. Decision making: A state decides how to interact with its neighbours. It
can either decide to cooperate (C) or to defect (D). Actors of prey type
simply recall the oponents decision from the last round, while predators
may attack with a certain probability without a provocation whenever it
is not already involved in warfare on another front and it feels superior.

Whenever a neighbour cooperators its trust level increases.

3As the title “Emergent Actors in World Politics: How States and Nations Develop and
Dissolve” indicates.

4This also has been noted in a review of the EPM: “The general question [...] regarding
modelling is one of robustness - might slight changes to the model of no apparent sub-
stantive importance greatly change the observed dynamics? This is particularly a concern
where there are assumptions embedded in operational decisions regarding the simulation.”
(Lazer, 2001)
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6336 3 17 1,4 73 83 15 7 7 28 73 15 0,31 0,13
17927 2 2 3,7 43 189 18 5 5 151 41 26 0,91 0,73
15529765 12 17 1,3 30 158 25 6 6 109 68 78 0,41 0,86
18182668 12 14 2,6 20 56 15 12 12 34 43 71 0,48 0,47
24101181 19 4 4,8 130 200 5 4 4 172 85 98 0,63 0,15
30097265 5 1 3,3 154 39 16 15 15 30 52 33 0,8 0,27
35326272 21 12 4,4 40 99 17 1 1 59 98 50 0,08 0,19
35988309 22 22 3,6 176 112 58 14 14 106 99 16 0,62 0,19
42452505 19 35 1,1 172 50 7 12 12 6 7 68 0,71 0,69
43089389 14 23 2,2 190 116 44 3 3 110 51 74 0,96 0,83
45887614 7 11 2,2 114 57 71 54 54 2 4 36 0,11 0,36
64605810 5 7 1,8 33 169 19 0 0 167 30 57 0,81 0,6
72832996 23 19 1,1 70 173 34 13 13 23 58 71 0,18 0,35
74828086 4 16 2,3 30 20 63 42 42 8 62 87 0,82 0,19
76180605 12 21 2,9 108 15 165 33 33 10 18 57 0,98 0,94
78506875 7 11 2,4 167 95 25 12 12 0 11 73 0,22 0,84
80307340 21 17 1,7 120 140 120 80 80 67 3 75 0,6 0,66
84774681 4 9 4,4 23 171 21 14 14 110 71 45 0,72 0,97
88954901 7 3 4,1 141 195 58 20 20 166 21 92 0,85 0,81
93950730 16 19 1,1 207 53 7 7 7 9 5 70 0,63 0,72
95808906 23 8 2,2 68 69 38 27 27 37 82 47 0,55 0,81
96388395 12 22 2,8 58 183 59 29 29 130 67 70 0,49 0,46
99822714 3 25 3,9 128 91 6 2 2 38 61 90 0,61 0,31

Table 1: Some Configurations α used for the Models M =M(α)

2. Resource assignment (“harvest”): Depending on the interaction constella-
tion (which is of one of the four types: C-C, C-D, D-C or D-D) resources
are assigned. Conflicts destroy resources.

3. In the attack phase squares are conquered. If the square is only a province
it is transferred to the superior actor. If the target square is the capital the
state collapses. Whenever a transfer results in separation of the territory
the separated squares evolve into independent states.

A state may decide to join a strategic alliance. If two or more actors feel
threatened by the same predator (i.e. an actor with a low trust level) they
automatically form an alliance. The alliance lasts as long as the threat lasts.
All members are obligated to bestead an attacked allied. Since a predator
compares its resources against the sum of all resources within the alliance, the
likelihood of an attack decreases.

4.2 The EPM Meta-Model and its Analysis

Thanks to the kind support of Erik Cederman we obtained a hard-copy of al-
most all the model’s original source code. One of us, Alena Störmer, undertook
a careful reverse engineering of the original code, written in Pascal, and reimple-
mented it completely from scratch using Python, a language much more common
in the machine learning context.
One of the main objectives of the redesign was to start the model with a

parametrisation, i.e. we have a meta-modelM that is instantiated with concrete
parameters α to obtain a concrete model M =M(α).5

The EPM already has a huge number of these tuneable parameters:

1. Thrust threshold: the level at which trust is established between actors

5In our first case study we keep the model’s rules fix; only some of its “magic numbers” are
varied. A much more elaborated meta-model may also vary the rules of the game as well.
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2. Threat threshold: the level at an actors feels threatened by another actors

3. Winning resource proportions: the ratio of resources that is sufficient for
the attacker to win.

4. Attack threshold: the ratio of resources that leads to an attack decision
of a predator

5. Initial resources: units of initial resources assigned to states

6. Deviation initial resources: deviation from the average above

7. Mean harvest: average number of resource units that are assigned in each
round

8. Deviation harvest: deviation from the average number of resource

9. Battle costs: The units of resources a conflict imposes on both sides

10. Predator rate: The number of predator states among all states

11. Probability of Attack: The probability that a predator decides to attack.

12. Taxation rate: the tax rate for provinces

13. Taxation discount: the discount a province receives for greater distance
to the capital

Each parameter is assigned to a random number chosen from an reasonable
range. The table in Figure 1 lists some of our randomly generated configurations
α. All in all, we generated n = 110 different meta-configuration α for our
experiment at random.
To measure similarity in the runs, i.e. the dynamics D(M(α;x0)), we use two

indicator values as characteristics X = X(D(M(α;x0))):

1. the number of power struggles and

2. the number of states at the end of the simulation.

Therefore, each simulation dynamics is represented as point in R2. We simu-
lated the modelM(α;x0) for each α several times to obtain more reliable values
for our indicator variables X. (Here we used 10 simulation runs for each α.)
Figure 2 (a) shows the results of our meta-simulation experiment. Figure 2

(b) shows essentially the same data but plots also the variance margins of the
indicator variables.
As a result of our Meta-Analysis of the EPM we observe, that the data reveals

a negative linear correlation of the number of power struggles and the number
of states at the end of the simulation, i.e. whenever one doubles the number
of power struggles the number of states at the end of the simulation is halved.
This result seems to be quite robust over a variation of different configuration
parameters α as we cannot observe any clustering here – at least not for the
indicator space under consideration in this presentation.
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(a)

(b)

Figure 2: Plot of the Simulation within the two-dimensional charateristics-plane
(a) without and (b) with variance margins
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Figure 3: Density Map of the Simulations

In an ex-post analysis this result is plausible: Whenever there are no power
struggles at all (or almost none) the number of states remains constant; when-
ever there is a huge amount of these power struggles the states are likely to
dissolve during the simulation.
There is another result: When considering the density map of the simulation

results (given in Figure 3) one can additionally observe that a majority of ≈ 75%
of all simulations tends to be in the “upper-left corner”, i.e. the number of states
is stable (or decreases only slightly) till the end of the simulation for a wide range
of values for the number of power struggles. Whenever all configurations α (i.e.
the possible worlds) are equally likely, then the rise of empires is a quite unlikely
process. On the other hand, since we do oberserve empires at rise, this means
that we either live in a world with a configuration α that is non-representative
for the set of all possibility (for reasons unknown at the moment), or not all
configurations α are equally likely (also for unknown reasons).
Also this is plausible in an ex-post analysis: When there are many power

struggles provinces are likely to be conquered. But, when we have many preda-
tors the provinces are conquered by other over and over again without building
more complex states.
As a third result, we like to note, that similarity of configurations α is a

sufficient condition for similar simulation dynamics D(M(α;x0)), but it is not a
necessary condition: A closer look at the simulation data reveals that indicator
values X that are very close to each other may belong to quite different models,
i.e. quite different values for α. So similar values for α leads to similar dynamics
D(M(α;x0)); but the whenever the dynamics D(M(α;x0)) is similar, it is not
clear whether the configurations α are similar, too. The concrete reason for this
is subject to current research.
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5 Conclusion

In this contribution we analysed the prominent Emergent Polarity Model (EPM)
from a meta perspective. As a first step, we varied the configuration parameters
α – the model’s “magic” numbers – over a wide range of plausible values to obtain
concrete instancesM(α;x0) of the EPM. Then we studied the sensitivity of the
simulation dynamics D(M(α;x0)) with respect to a variation of α.
We can cautiously summarise these results as follows: The model tendency to

decrease the number of states in the long run is quite robust against variation of
configurations as we cannot observe separable clusters In the indicator variable
plot. But on the other hand, one can see that a majority of configurations tend
to produce no nation development process at all: The number of states does not
decrease significantly. Therefore, we obtain evidence that not all configurations
lead to nation building while others do.
The subsequent research questions that now arises is whether we can charac-

terise those configurations α that lead to nation building. And, assuming that
we can separate these “effective” configurations from those that aren’t, we might
ask, how these separation lines can be interepreted with respect to empirics?

References
Lars-Erik Cederman. Emergent Actors in World Politics: How States and Nations

Develop and Dissolve. Princeton University Press, Princeton, NJ, 1997.

Bruce Edmonds and Ruth Meyer, editors. Simulating Social Complexity: A Handbook.
Springer-Verlag, 2013.

Joshua M. Epstein and Robert L. Axtell. Growing Artificial Societies: Social Science
From The Bottom Up. Brookings Institution Press MIT Press, 1996.

Josá M. Galán, Luis R. Izquierdo, Segismundo S. Izquierdo, José I. Santos, Ricardo
del Olmo, and Adolfo López-Paredes. Checking simulations: Detecting and avoiding
errors and artefacts. In Edmonds and Meyer (2013), chapter 7, pages 95–116.

Nigel Gilbert and Klaus G. Troitzsch. Simulation for the social scientist. Open Uni-
versity Press, 1999.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning. Springer-Verlag, 2013.

David Lazer. Review of Emergent Actors in World Politics: How States and Nations
Develop. Journal of Artificial Societies and Social Simulation, 4(2), 2001. URL
http://jasss.soc.surrey.ac.uk/4/2/reviews/lazer.html.

R. v. Lüde, D. Moldt, R. Valk, M. Köhler, R. Langer, H. Rölke, and D. Spresny.
Sozionik: Modellierung soziologischer Theorie. Wirtschaft – Arbeit – Technik. Lit-
Verlag, Münster, 2003. URL http://www.lit-verlag.de/isbn/3-8258-5980-0.

Rolf v. Lüde, Daniel Moldt, and Rüdiger Valk, editors. Selbstorganisation und Gov-
ernance in künstlichen und sozialen Systemen, volume 5 of Wirtschaft – Arbeit –
Technik. Perspektiven gesellschaftlichen Wandels. Lit Verlag, Münster, 2009. URL
http://www.lit-verlag.de/isbn/3-8258-10057-3.

12


