
Master Thesis

Real-time speech separation with deep
attractor networks on an embedded system

Marc Siemering

marc.siemering@gmail.com

MIN-Fakultät

Fachbereich Informatik

Arbeitsbereich Signalverarbeitung

Studiengang: Informatik

Matrikelnummer: 7118655

Abgabedatum: 27.11.2020

Erstgutachter: Prof. Dr.-Ing. Timo Gerkmann

Zweitgutachter: M.Sc. David Ditter

Betreuer: M.Sc. David Ditter

mailto:marc.siemering@gmail.com

i

Abstract

In this work, we investigate the applicability of the Online Deep Attractor Network

(ODANet) for real-time speech separation on an embedded system with limited pro-

cessing resources. To optimize the ODANet for a resource constrained environment, we

extensively evaluate two different reduction methods. First, we present a detailed anal-

ysis of complexity reduction via hyper-parameter tuning of the ODANet and second,

we introduce a compression method for long short-term memory (LSTM) layers to the

ODANet architecture. While our results suggest that real-time capability is possible for a

desktop computer with these methods, it is not achievable for an embedded device like

the NVIDIA Jetson Nano while maintaining an acceptable separation performance. In

further findings, we show that the utilized compression method for LSTMs is superior

to hyper-parameter tuning in terms of finding a good trade-off between low processing

time and separation performance. Furthermore, we want to highlight that this work is

the first to our knowledge to give an extensive description of a singular value decompo-

sition based compression method for LSTMs including an open-source implementation

available at https://github.com/sp-uhh/compressed-lstm .

https://github.com/sp-uhh/compressed-lstm

ii

Contents iii

Contents

1. Introduction 1

2. Related Work 5

2.1. Speech Separation Algorithms . 5

2.2. Compression Methods for Neural Networks 7

2.3. Signal Processing with Neural Networks on Embedded Systems 8

3. Methods 11

3.1. Utilized Methods . 11

3.1.1. Deep Attractor Network (DANet) 11

3.1.2. Anchored Deep Attractor Network (ADANet) 15

3.1.3. Online Deep Attractor Network (ODANet) 18

3.1.4. Compressed Long Short-term Memory (CLSTM) 21

3.2. Proposed Methods . 25

3.2.1. Sphere Anchor Point Initialization 25

3.2.2. Compressed Online Deep Attractor Network (CODANet) 28

4. Evaluation 31

4.1. Experimental Setup . 31

4.2. Evaluation Methods . 33

4.2.1. Scale-invariant Source to Noise Ratio (SI-SNR) 33

4.2.2. Source-to-Distortion Ratio (SDR) . 33

4.2.3. Measurement of Processing Time per Frame 34

4.3. Results . 35

4.3.1. Anchor Point Initialization Methods 35

4.3.2. Impact of Optimizer and Number of LSTM Units on ADANet . . . 39

4.3.3. Hyper-parameter Tuning of ODANet 40

4.3.4. Run-time Optimization with Compression 42

4.3.5. Hardware Related Run-time and Real-time Capability 44

4.3.6. Additional Findings . 47

5. Discussion 51

6. Conclusion 55

iv Contents

Bibliography 57

A. Appendix 61

A.1. Compressed LSTM Equations . 62

A.2. ADANet Architecture Figure Adapted for the First Frame of the ODANet 63

A.3. Fixed Parameters for Hyper-parameter Tuning 64

A.4. SI-SNR over Processing Time per Frame Including ODANet with 6 Anchors 64

A.5. Processing Time per Frame of ODANet . 66

A.6. Processing Time per Frame of CODANet 72

Contents v

Acronyms

ADAM Adaptive Moment Estimation

ADANet Anchored Deep Attractor Network

AECNN Auto-Encoder Convolutional Neural Network

BLSTM bidirectional long short-term memory

CLSTM compressed long short-term memory

CNN convolutional neural network

CODANet Compressed Online Deep Attractor Network

CPU central processing unit

DANet Deep Attractor Network

dB decibel

DNN deep neural network

DPCL Deep Clustering

EM expectation maximisation

FFT fast Fourier transform

FP16 16 bit floating point

GFLOPS giga floating point operations per second

GPU graphics processing unit

IBM ideal binary mask

IFFT inverse fast Fourier transform

IRM ideal ratio mask

ISTFT inverse short-time Fourier transform

LPDDR low-power double data rate synchronous dynamic random ac-

cess memory

LSTM long short-term memory

LVCSR large vocabulary conversational speech recognition

MB megabyte

ML machine learning

MSE mean squared error

NN neural network

ODANet Online Deep Attractor Network

PC personal computer

PESQ perceptual evaluation of speech quality score

PIT Permutation Invariant Training

vi Contents

RMSprop Root Mean Square Propagation

RNN recurrent neural network

SAR sources-to-artifacts ratio

SDR source-to-distortion ratio

SI-SNR scale-invariant source-to-noise ratio

SIR source-to-interferences ratio

SNR sources-to-noise ratio

STFT short-time Fourier transform

SVD singular value decomposition

TASNet Time-domain Audio Separation Network

uPIT utterance-level Permutation Invariant Training

WER word error rate

WFM ’wiener-filter’ like mask

WSJ0 Wall Street Journal

List of Figures vii

List of Figures

1.1. Illustration of speech separation system. 2

1.2. Spectrograms of mixture, mask, and separated speaker 1 and speaker 2 . . 3

3.1. DANet architecture (training). 12

3.2. DANet architecture (inference). 14

3.3. PCA of attractor points from 10.000 utterances. 15

3.4. ADANet architecture. 16

3.5. ODANet architecture (following frames t > 1) 20

3.6. General RNN and its compressed version. 22

3.7. The LSTM Cell and its compressed version 24

3.8. Proposed anchor point initialization methods 26

3.9. PCA of anchor point movement during training 27

4.1. Illustration of starget as the orthogonal projection of ŝ onto s and enoise as

the difference between ŝ and starget. 33

4.2. Discrepancy between validation loss and validation SI-SNR 38

4.3. Validation loss of experiment 2.3 with learning rate reduction after epoch

14 from 0.0001 to 0.00005 and after epoch 20 to 0.000025. 40

4.4. SI-SNR over processing time per frame for ODANet with 4 anchor points

and CODANet . 43

4.5. Histogram of processing time per frame for CODANet on the PC 46

4.6. Histogram of processing time per frame for CODANet on the NVIDIA

Jetson Nano . 47

4.7. Validation loss of ADANet experiment with meta-frame size 100 48

4.8. SI-SNR for curriculum training of CODANet 48

4.9. SI-SNR over processing time per frame for ODANet 4 LSTM layers and 3

LSTM layers and CODANet . 49

A.2. ODANet architecture (first frame t = 1) . 63

A.3. SI-SNR over processing time per frame for ODANet with 4 and 6 anchor

points and CODANet . 64

A.4. Histogram of processing time per frame for ODANet on the PC with only

CPU . 70

A.5. Histogram of processing time per frame for ODANet on the PC with GPU 70

viii List of Figures

A.6. Histogram of processing time per frame for ODANet on the NVIDIA Jet-

son Nano with only CPU . 71

A.7. Histogram of processing time per frame for ODANet on the NVIDIA Jet-

son Nano with GPU . 71

A.8. Histogram of processing time per frame for CODANet on the PC with GPU 73

A.9. Histogram of processing time per frame for CODANet on the NVIDIA

Jetson Nano with GPU . 74

List of Tables ix

List of Tables

4.1. Preprocessing parameters . 32

4.2. Fixed parameters of first experiment series evaluating the anchor point

initialization methods. 36

4.3. Preliminary experimental results for the different anchor point initializa-

tion methods. 37

4.4. Final experimental results for the different anchor point initialization meth-

ods. 38

4.5. Experimental results of evaluation of different optimizer settings and num-

ber of units per direction in LSTM of the ADANet. 39

4.6. Results of hyper-parameter tuning. 41

4.7. Results of Compressed Online Deep Attractor Network. 42

4.8. Rank for each layer of the CODANet with different compression threshold. 43

4.9. Mean processing time per frame in ms of CODANet on NVIDIA Jetson

Nano and PC . 45

4.10. Percentage of frames of the CODANet for which the processing time is

larger than the hop size of 8 ms. 46

5.1. Comparison with other methods on WSJ0-2mix dataset. 52

A.1. Fixed parameters for hyper-parameter tuning experiments. 64

A.2. Processing time per frame of ODANet on PC using only the CPU with the

Keras LSTM implementation 1 . 66

A.3. Processing time per frame of ODANet on PC using only the CPU with the

Keras LSTM implementation 2 . 66

A.4. Processing time per frame of ODANet on PC using the GPU with the Keras

LSTM implementation 1 . 67

A.5. Processing time per frame of ODANet on PC using the GPU with the Keras

LSTM implementation 2 . 67

A.6. Processing time per frame of ODANet on NVIDIA Jetson Nano using only

the CPU with the Keras LSTM implementation 1 68

A.7. Processing time per frame of ODANet on NVIDIA Jetson Nano using only

the CPU with the Keras LSTM implementation 2 68

A.8. Processing time per frame of ODANet on NVIDIA Jetson Nano using the

GPU with the Keras LSTM implementation 1 69

x List of Tables

A.9. Processing time per frame of ODANet on NVIDIA Jetson Nano using the

GPU with the Keras LSTM implementation 2 69

A.10.Mean processing time per frame in ms of CODANet 72

A.11.Variance of processing time per frame of CODANet 72

A.12.Maximum processing time per frame in ms of CODANet 73

xi

List of Symbols

Symbol Description Dimension

ai Attractor point for speaker i R1×K

at−1,i Attractor point for speaker i at time t− 1 R1×K

Ap Attractor points for combination p (ADANet) RC×K

bl Bias of layer l R1×Nl

bf Training parameter of ODANet’s dynamic weighting R1×K

bg Training parameter of ODANet’s dynamic weighting R1×K

C Number of Speakers N

C Cost function

D Distance between embedding points and attractor points

(DANet)

RC×FT

di Distance between embedding points and the attractor point

of speaker i
R1×FT

Dp Distance between embedding points and anchor point com-

bination p (ADANet)

RC×FT

E Embedding RK×FT

enoise Error signal in time domain for SI-SNR RT

eartif Artifacts error signal in time domain for SDR RT

einterf Interference error signal in time domain caused by e.g. other

speakers for SDR

RT

e∗noise Noise error signal in time domain caused by sensor noise for

SDR

RT

f Frequency index {1, 2, . . . , F}

xii

Symbol Description Dimension

F Number of frequency bins N

Γp Similarity matrix containing the pairwise similarity between

the attractor points in the combination p
RC×C

Γpi,j Element in row i and column j of similarity matrix Γp R

γp Maximal pairwise similarity between the attractor points in

the combination p
R

hl
t Output of the l-th layer R1×Nl

h̃l
t Projected/compressed output of the l-th layer R1×rl

j Anchor point index {1, 2, . . . N}

Jf Training parameter of ODANet’s dynamic weighting RK×K

Jg Training parameter of ODANet’s dynamic weighting RK×K

K Embedding dimension N

l Layer index N

L Loss function

λ Compression threshold [0, 1]

M Masks assign each time-frequency point to the sources in

proportion to its share in the mixture

[0, 1]C×FT

M̂ Estimated masks [0, 1]C×FT

m̂i Estimated mask for speaker i [0, 1]1×FT

µ Mean of K-dimensional normal distribution RK

N Number of Anchor points N

Nl Number of units in layer l N

NK K-dimensional normal distribution

o Number of operation of a general RNN N

õ Number of operation of a compressed RNN in general N

o∗ Number of operation of a general LSTM N

xiii

Symbol Description Dimension

õ∗ Number of operation of a compressed LSTM in general N

ψj Anchor point number j R1×K

Ψp Anchor point combination p RC×K

p Anchor point combination index {1, 2, . . . (N
C)}

Pl Projection matrix Pl = Ũl
hΣ̃l

h RNl×rl

rl Rank of layer l N

si(t) True speech signal function of speaker i in time-domain R→ R

s True speech signal array of speaker i in time-domain RT

ŝ Estimated speech signal array of speaker i in time-domain RT

starget Orthogonal projection of ŝ onto s RT

Si(f , t) True complex spectrogram function of speaker i R2 → C

Si True complex spectrogram matrix of speaker i C1×FT

Ŝi Estimated complex spectrogram matrix of speaker i C1×FT

Si(f , t) True magnitude spectrogram function of speaker i R2 → R

Si True magnitude spectrogram matrix of speaker i R1×FT

Σl
h SVD diagonal matrix containing singular values of Wl

h RNl×Nl

Σ̃l
h Truncated SVD diagonal matrix containing the largest rl sin-

gular values of Wl
h

Rrl×rl

Σ Covariance matrix of K-dimensional normal distribution RK×K

σl
j j-th singular value of SDV with σl

1 ≥ σl
2 ≥ . . . ≥ σl

Nl R

t Time index {1, 2, . . . , T}

T Number of time frames / samples N

τ Context window size (ODANet) N

Ul
h SVD matrix containing left-singular vectors of Wl

h RNl×Nl

Ũl
h Truncated SVD matrix containing the first rl left-singular

vectors of Wl
h

RNl×rl

xiv

Symbol Description Dimension

Uf Training parameter of ODANet’s dynamic weighting RF×K

Ug Training parameter of ODANet’s dynamic weighting RF×K

Vl
h SVD Matrix containing right-singular vectors of Wl

h RNl×Nl

Ṽl
h Truncated SVD matrix containing the first rl right-singular

vectors of Wl
h

Rrl×Nl

Wl
x Kernal of layer l RNl−1×Nl

Wl
ix Kernal of LSTM input gate (layer l) RNl−1×Nl

Wl
ox Kernal of LSTM output gate (layer l) RNl−1×Nl

Wl
f x Kernal of LSTM forget gate (layer l) RNl−1×Nl

Wl
cx Kernal of LSTM cell (layer l) RNl−1×Nl

W̄l
x Combined kernel of LSTM (layer l) RNl−1×4Nl

Wl
h Recurrent kernal of layer l RNl×Nl

Wl
ih Recurrent kernal of LSTM input gate (layer l) RNl×Nl

Wl
oh Recurrent kernal of LSTM output gate (layer l) RNl×Nl

Wl
f h Recurrent kernal of LSTM forget gate (layer l) RNl×Nl

Wl
ch Recurrent kernal of LSTM cell (layer l) RNl×Nl

W̄l
h Combined recurrent kernel of LSTM (layer l) RNl×4Nl

Wf Training parameter of ODANet’s dynamic weighting RN4×K

Wg Training parameter of ODANet’s dynamic weighting RN4×K

x(t) Mixture signal function in time-domain R→ R

X (f , t) Complex mixture spectrogram function R2 → C

X Complex mixture spectrogram matrix C1×FT

X(f , t) Magnitude mixture spectrogram function R2 → R

X Magnitude mixture spectrogram matix R1×FT

Y True source assignment [0, 1]C×FT

Ŷ Estimated source assignment [0, 1]C×FT

xv

Symbol Description Dimension

ŷi Estimated source assignment for speaker i [0, 1]1×FT

Ŷp Estimated source assignment for anchor point combination

p
[0, 1]C×FT

Zl
h Recurrent kernal back-projection matrix of layer l Rrl×Nl

Zl+1
x Kernal back-projection matrix of layer l + 1 Rrl×Nl+1

Z̄l+1
x Combined back-projection kernel of LSTM (layer l) Rrl×4Nl+1

Z̄l
h Combined back-projection kernel of LSTM (layer l) Rrl×4Nl

xvi

1

1. Introduction

In real-world speech signal processing applications we often encounter situations where

multiple speakers are active in the signal at the same time, but we are actually interested

in the speech source signal of one or multiple speakers in the mixture. For this so-called

problem of speech separation, great advances have been made by the research commu-

nity in recent years using neural networks (NNs). Still, real-time processing with NNs

requires a lot of computational resources, and so far there is little research like [1] con-

sidering the deployment of speech separation algorithms based on NNs on embedded

devices like mobile phones or hearing aids with limited resources available. In this re-

search work, we strive to close this gap by optimizing the Online Deep Attractor Network

(ODANet) [2] for real-time speech separation on an embedded system through hyper-

parameter tuning and compression with a low-rank matrix factorization technique for

NNs.

Application fields of the speech separation are for instance automatic meeting tran-

scription or multi-party human-machine interactions for example with speech assistants

[3]. In these application areas it is currently common practice that the audio signals are

sent to a cloud computer and processed there. However, there is a growing interest in

processing the audio signal on mobile devices without the need for an internet connec-

tion and sending the audio data to a cloud computer, which can strongly increase the

latency [4]. Hearing aids are another conceivable field of application for speech separa-

tion algorithms where a short processing time is crucial and the available processing and

memory resources are very limited.

Mathematically the speech separation problem is defined as separating C speech source

signals si(t) in a mixture

x(t) =
C

∑
i=1

si(t) (1.1)

as shown in the left part of figure 1.1, which illustrates a general speech separation system

for two speakers. Many early NN-based approaches to the speech separation problem

like Deep Clustering (DPCL) [5], Permutation Invariant Training (PIT) [3], or the Deep

Attractor Network (DANet) [2, 6, 7] apply a short-time Fourier transform (STFT) on the

time-domain mixture signal x(t) and solve the speech separation problem in the time-

frequency domain, where the result of the STFT is the complex mixture spectrogram

X (f , t) =
C

∑
i=1
Si(t, f) (1.2)

2 1. Introduction

Speech
Separation
System

Figure 1.1.: Speaker 1 and speaker 2 speaking into the same microphone, which records
the mixture x of the two overlapping signals (s1 and s2). The goal of the
speech separation system is to estimate the original speech signals of speakers
1 and 2. (Icons from flaticon.com)

which is the sum of the complex speech source spectrograms Si(t, f). DPCL, PIT, and the

DANet solve the speech separation problem by generating masks M for the magnitude

mixture spectrogram

X(f , t) = |X (f , t)|. (1.3)

For each speaker i the mask mi indicates the affiliation of each time-frequency bin X(f , t)
in the mixture spectrogram to the speaker i [7]. The goal is to estimate the ideal binary

mask (IBM), the ideal ratio mask (IRM), or the ’wiener-filter’ like mask (WFM) which are

defined as

IBMi, f t = δ(|Si, f t| > |Sj, f t|) ∀j 6= i (1.4)

IRMi, f t =
|Si, f t|

∑C
j=1 |Sj, f t|

(1.5)

WFMi, f t =
|Si, f t|2

∑C
j=1 |Sj, f t|2

(1.6)

where Si ∈ R1×FT is the matrix containing the magnitude spectrogram of speaker i and

δ(x) = 1 if the expression x is true and δ(x) = 0 if the expression x is false [7]. F and T are

the number of frequency bins and the number of time frames of the STFT respectively.

The source spectrograms Si ∈ C1×FT are estimated as

Ŝi = X � m̂i (1.7)

where � is the element-wise multiplication, m̂i is the estimated mask for speaker i and

X ∈ C1×FT is the complex spectrogram.

Figure 1.1 illustrates the speech separation problem for two speakers and Figure 1.2

shows how a mask can be applied to the mixture in the time-frequency domain to sepa-

rate two speakers.

The discussed time-frequency domain approaches [2,3,5–7] use deep neural networks

(DNNs), which are NN with an input layer, an output layer and at least one hidden layer

https://www.flaticon.com/

3

Figure 1.2.: Spectrograms of mixture (top left), mask (top right), and separated speaker 1
(bottom left) and speaker 2 (bottom right). Figure from [6].

in between. More particularly they use long short-term memory (LSTM) layers, which

are recurrent neural network (RNN) layers. In RNNs the individual network cells have

recurrent connections, which means each cells has a connection to itself with a time delay.

Because of its recurrent connections and further mechanisms LSTMs are well suited for

NN learning problems where the input has a meaningful time dimension [8], which is

the case for speech signals.

For real-time processing it is required that the used system is causal, which means the

system should only use information from current and past time steps and not look at

future time steps when processing the current time step [9]. Furthermore, the latency

between the audio input and the processed audio output should not be larger than 30 ms
[10]. In this work, we aim for processing times below 8 ms per time frame, which is equal

the hop size we use in the STFT. A NN with LSTMs can only be causal if unidirectional

LSTMs are used in the NNs. However, most of the mentioned systems use bidirectional

long short-term memory (BLSTM) and processes the audio data offline as a non-causal

system. Even if unidirectional LSTMs are used, most of the networks [3, 5–7] process the

time-frequency domain data not frame by frame but require meta-frames, which makes

them non-causal systems.

That is why in this work we try to optimize the ODANet by Han et al. [2], a causal

system, for real-time processing on an embedded system like the NVIDIA Jetson Nano.

For this work we have chosen the NVIDIA Jetson Nano as the test system because this

single-board computer has a similar form factor as the Raspberry Pi and is additionally

equipped with a GPU [11]. To optimize the ODANet for embedded systems we try to

reduce the number of weights especially in the LSTM layers. For this we investigate

two methods, firstly hyper-parameter tuning and secondly compressing the LSTMs with

the compression method proposed by Prabhavalkar et al. [4] based on low-rank matrix

factorization.

4 1. Introduction

Our findings suggest that the compression method by Prabhavalkar et al. is better

suited for finding a good trade-off between low processing time and speech separation

performance. By reducing the weights of the ODANet, among other things through the

introduction of the Compressed Online Deep Attractor Network (CODANet), our work

improves the real-time capability of ODANet on embedded systems. However, real-time

speech separation on the selected embedded system, the NVIDIA Jetson Nano, is not

achieved in this work.

The rest of this work is structured as follows. In chapter 2 we present related speech

separation algorithms based on NNs, analyze different compression method for NNs,

and look at related work that also aimed to optimize signal processing NNs for em-

bedded systems. In the methods chapter 3 we explain the ODANet and its evolution

from the DANet over the Anchored Deep Attractor Network (ADANet) in detail. Fur-

thermore, we describe the used compression method by Prabhavalkar et al. [4] and the

resulting compressed long short-term memorys (CLSTMs). Then we introduce the CO-

DANet as well as an optimized way to initialize the anchor points in the ADANet, which

is also used in the ODANet and CODANet. In chapter 4 we present the experimental

setup used to train our NN implementations, the methods we used to evaluate the ex-

periments, followed by the experimental results. Finally, we discuss the results in chapter

5 and conclude the work in chapter 6.

5

2. Related Work

In this chapter, we first briefly describe DNN-based single-channel speech separation

algorithms related to the DANet. Second, we look at the different methods for the com-

pression of NNs in general and explain our choice for the compression method of by

Pravhavalkar et al. [4]. In the third part of this chapter, we present related work on the

optimization of NN-based signal processing algorithms for embedded systems with nu-

merical results.

2.1. Speech Separation Algorithms

In recent years there has been great progress in the research on single-channel speech

separation with DNNs. These DNN-based algorithms can be categorized into algorithms

operating in the time-frequency domain and algorithms operating directly in the time

domain. Well known time-frequency domain approaches are (among others) DPCL by

Hershey et al. [5] and PIT by Yu et al. [3].

The DPCL network maps each time-frequency bin into a higher dimensional embed-

ding space E ∈ RK×FT with the training objective to minimize the cost function

CY(E) = ‖ETE− YTY‖2
F (2.1)

which calculates the distance in the Frobenius norm ‖ · ‖F between the true affinity matrix

YTY and the estimated affinity matrix ETE. 1 With this cost function the network learns

to map time-frequency bins belonging to the same speaker into similar regions in the

embedding space while separating time-frequency bins belonging to different speakers.

During training, this is achieved using the true source assignments Y, while during in-

ference the network separates the sources by applying k-means in the embedding space,

where the k-means clusters are equivalent to the estimated source assignments.

The DPCL method is further improved by Isik et al. [12] and Wang et al. [13] who

present the DPCL++ and Chimera++ networks, respectively. Wang et al. [14] also present

a low-latency DPCL version by replacing the bidirectional LSTMs with unidirectional

LSTMs and changing the STFT window size from 32 ms to 8 ms. The cluster centers for

k-means are calculated for the first 1.5 seconds of the signal during, which the network

1The notation from [5] is adapted to match the notation in this work. In [5] the embedding space is
V ∈ RFT×K in our work the embedding space is E ∈ RK×FT . In [5] the true source assignment is Y ∈ RFT×C

in our work the true source assignment is Y ∈ RC×FT .

6 2. Related Work

is not able to generate any output. Afterwards, these cluster centers are used to generate

the cluster assignments frame by frame for the rest of the utterance. In comparison the

ODANet has a more dynamic way to calculate the cluster centers (attractors) online by

updating them using a exponentially weighted moving average (see section 3.1.3).

PIT by Yu et al. [3] directly generates a mask from the magnitude spectrogram of the

mixture input X using a DNN. This mask is then used to estimate the source signals

Ŝi. Because there is a high probability of a permutation in the output (e.g. Ŝ1 is a good

estimate for S2 and vice versa), which would cause a high error in the training objective,

which is to minimize the mean squared error (MSE) between Ŝi and Si for i = 1, . . . , C,

PIT minimizes the MSE for the permutation with the lowest MSE. Kolbaek et al. present

an advanced version of PIT called utterance-level Permutation Invariant Training (uPIT)

[15], which predicts phase sensitive masks instead of amplitude masks. Furthermore,

the network architecture is improved by using LSTMs instead of non-recurrent DNNs or

convolutional neural networks (CNNs), which are used in PIT and limit the network to

a fixed input and output size. Because of this architecture change, uPIT is able to predict

different input and output sizes and is also causal if unidirectional LSTMs are used.

One limitation of most DNN-based speech separation approaches in the time-frequency

domain is that their performance is limited by the IBM, IRM, or WFM on the magni-

tude spectrogram, while the phase information for each source is taken from the mix-

ture. In contrast, the Time-domain Audio Separation Network (TASNet) by Luo and

Mesgarani [16] shows that time domain approaches can outperform time-frequency do-

main approaches because the former do not have this limitation. In addition to the per-

formance advantages TASNet has also an advantage in the algorithmic latency because

it does not require an STFT and works directly on the time domain signal on segments as

short as 5 ms [16].

The TASNet uses an encoder-decoder framework and performs the speech separation

by masking the encoder outputs, which are non-negative weights of the base signals

contained in the audio segment to be separated [16]. The NN architecture of TASNet

is further improved in [17–19]. In the NNs described in these papers, the base signals

for the encoder and decoder are learned by the networks as trainable parameters. Ditter

and Gerkmann [20] show that using a deterministic multi-phase gammatone filterbank

instead of the learned base signals in the encoder-decoder framework further improves

the performance. Other recent time-domain approaches to the speech separation problem

are Wave-U-Net [21], FurcaNeXt [22], SepFormer [23], and Wavesplit [24].

Despite the advantages of the time-domain approaches, we focus on the ODANet,

which operates in the time-frequency domain, because the ODANet is a causal systems

with a relatively small model size (compare table 5.1 on page 52) and because in pre-

liminary work we have successfully implemented a time-frequency domain speech sep-

aration algorithm for real-time processing. Nevertheless, the compression method by

Prabhavalkar et al. [4] can be applied to all DNN-based speech separation algorithms

2.2. Compression Methods for Neural Networks 7

using RNNs in particular LSTMs, which is the case for the original TASNet in [16]. In

the discussion, chapter 5, we compare our results to the related work mentioned in this

section in terms of the performance and the model size.

2.2. Compression Methods for Neural Networks

In their survey paper Choudhary et al. [25] summarize several approaches for the com-

pression and acceleration of machine learning (ML) models. The four main approaches

to compress and accelerate a NN are

• pruning,

• quantization,

• knowledge destillation,

• low-rank factorization.

The main goal of pruning is to reduce the storage-size of the network. This is achieved

by zeroing out network weights that are below a certain threshold or redundant. How-

ever, though pruning reduces the number of weights and thereby the model size, pruning

does not reduce the number of operations by default. Only if neuron pruning or layer

pruning is applied, which removes entire neurons or layers of a DNN, the number of

operations is reduced [25].

Quantization of the network weights can lead to a significant size reduction. On the

one hand, uniform quantization can also reduce computing time, e.g. quantizing 32-

bit weights to 16-bit or 8-bit weights if the hardware efficiently processes 16-bit or 8-bit

operations. On the other hand, while a non-uniform quantization can greatly reduce the

model size, it cannot reduce the computation time [25].

In knowledge distillation a smaller ’student’ network is trained to generate the outputs

of a larger ’teacher’ network when shown the same data. Knowledge distillation works

good for classification problems [25].

In low-rank matrix factorization weight matrices W ∈ Rm×n are factorized in to matri-

ces P ∈ Rm×r and Z ∈ Rr×n using a singular value decomposition (SVD) so that PZ is

the best rank r approximation of W. This reduces the size and the number of operations

for a specific matrix from m · n to r · (m + n) [25]. This method is explained in detail in

section 3.1.4.

We choose low-rank matrix factorization for compressing the ODANet because it is

a deterministic method to reduce the size and the number of operations of a NN and

because it has been previously applied to RNNs in particular LSTMs by Prabhavalkar et

al. for automatic speech recognition [4].

8 2. Related Work

2.3. Signal Processing with Neural Networks on Embedded

Systems

While the previous section presents compression methods for NNs in general, this sec-

tion presents related work on signal processing with neural networks on embedded sys-

tems with numerical results. This work is closely related to our work in the sense that

it also considers the optimization of NN-based speech enhancement systems for embed-

ded systems [26, 27] or compares the processing time of image processing NNs on the

NVIDIA Jetson Nano to the procssing time on a desktop with a graphics processing unit

(GPU) [28].

In speech enhancement the goal is to retrieve the clean speech signal s(t) from the

signal

x(t) = s(t) + n(t) (2.2)

in which the clean speech signal is distorted with noise n(t). Although speech enhance-

ment and speech separation are related problems, they differ in that in speech separation

several similar speech signals are to be separated from each other, whereas in speech

enhancement exactly one speech signal is to be separated from the noise signal, which

often has slightly different characteristics. Nevertheless, since this work is one of the first

works to optimize a NN-based speech separation system for real-time processing on an

embedded systems, we consult the results from [26, 27] in our discussion.

Drakopoulos et al. [26] propose the Auto-Encoder Convolutional Neural Network

(AECNN) for real-time speech enhancement on an embedded system, in particular the

Raspberry Pi 3 Model B+. They optimize the AECNN for the embedded system by hyper-

parameter tuning the number of CNN layers and the number of filters in the CNNs.

They report execution times from 42 ms per frame of size 1024 samples at a sampling

rate of 16 kHz for a network with 3 million parameters to 5.7 ms per frame for a net-

work with 0.2 million parameters and a frame size of 128 frames at a sampling rate of

16 kHz. Drakopoulos et al. present the speech enhancement performance in terms of the

perceptual evaluation of speech quality score (PESQ) [29] and the segmental sources-to-

noise ratio (SNR) [26] but do not compare their results to a baseline or any other research.

Among other results Drakopoulos et al. report that their network is 6.5% faster with a

Tensorflow frontend than with a Keras frontend [26].

In contrast to Drakopoulos et al., who use hyper-parameter tuning for the embed-

ded optimization, Fedorov et al. [27] propose TinyLSTM, which is optimized for embed-

ded speech enhancement on hearing aids by applying pruning and integer quantization.

Their baseline architecture consists of 2 unidirectional LSTM layers with 256 units in

each layer and two fully connected layers with 128 units in each layer. With a total of 0.97

million parameters their baseline is about 12-times smaller than our ODANet baseline,

which has almost 12 million parameters (see equation 3.44 on page 29 for the calculation

of the number of parameters of the ODANet). With pruning and quantization from 32bit

2.3. Signal Processing with Neural Networks on Embedded Systems 9

floating point weights to 8 bit integer weights Fedorov et al. are able to reduce the model

size from 3.7 megabyte (MB) to 0.31 MB, while the number of parameters is reduced to

34% of the baseline from 0.97 million to 0.33 million. This size reduction results in a

time reduction from 12.52 ms to 4.26 ms per frame on a micro-controller unit hardware.

Fedorov et al. are able to achieve this reduction in the model size with only a small re-

duction of 4% in the source-to-distortion ratio (SDR) speech enhancement performance

on CHiME2 WSJ0 dataset [30].

Last but not least, we would like to mention related work on the NVIDIA Jetson hard-

ware. Bianco et al. [28] compare the performance and run-time of image recognition

DNNs on a desktop computer with a NVIDIA Titian X Pascal GPU to the performance

and run-time of the same DNNs on the NVIDIA Jetson TX1 board, which has 256 GPU

cores compared to 128 GPU cores on the NVIDIA Jetson Nano, but other than that com-

parable hardware specifications [11,31] (all relevant NVIDIA Jetson Nano hardware spec-

ifications are presented in section 4.1 on page 32). Bianco et al. report that the NVIDIA

Jetson TX1 takes 5 to 35 times longer than the personal computer (PC) with the NVIDIA

Titian X Pascal GPU to process a single image. We use these values as an orientation

for our evaluation of the ODANet and the CODANet, which are presented in the next

chapter.

10 2. Related Work

11

3. Methods

This chapter introduces the methods we used for our implementation (section 3.1) as well

as our proposal to combine and extend these methods to the Compressed Online Deep

Attractor Network (CODANet) (section 3.2).

3.1. Utilized Methods

In this section, we describe the Deep Attractor Network (DANet) and its evolution from

the first paper [6] over the Anchored Deep Attractor Network (ADANet) [7] to the Online

Deep Attractor Network (ODANet) [2]. For each network we explain the general idea,

the architecture, and implementation details of our implementation that differ from the

original description.

Furthermore, we present the compression method by Prabhavalkar et al. [4] for RNNs

that jointly compresses the recurrent and non-recurrent weight matrices of RNN layers

with a low-rank matrix factorization and leads to the CLSTM.

3.1.1. Deep Attractor Network (DANet)

To solve the speech separation problem, the DANet by Chen et al. [6] learns to map

time-frequency bins belonging to the same speaker close to the attractor point of that

speaker in the embedding space. Similar to DPCL [5] the idea of the embedding space is

that points belonging to the same speaker are mapped close to each other, while points

belonging to different speakers are supposed to have a large distance1 in the embedding

space. In the DANet this mapping is not the explicit goal but rather are the mapping into

the embedding space and the positions of the attractor points implicitly learned by the

overall training target.

The idea behind the attractor points is that each attractor point attracts the time-frequency

bins of a specific speaker assigned to it and at the same time repels time-frequency bins

of other speakers. The idea of the attractors is based on the perceptual magnet effect

observed by Kuhl [32]. Kuhl shows that humans can identify prototypes of speech cat-

egories if they are played the prototype sound and variations of it. In one of his experi-

ments for example adults were plaid different variations of the /i/ vowel and asked to

rate the goodness of it. This experiment showed that across all listeners the rating was

similar and the prototype /i/ vowel was always rated best. In further experiments Kuhl

1In DANet the dot product is used as the distance measure.

12 3. Methods

shows that these prototypes of sound categories serve as reference mental representations

(reference points) when listening to speech sounds. These reference points are called per-

ceptual magnets. The idea of the DANet can be seen as learning perceptual magnets for

speaker characteristics. In the DANet the perceptual magnets are called attractor points.

DANet
(training)

Magnitude Spectrogram

4 (B)LSTM Layers

Fully-connected
Layer

Embedding

Attractors

True Source Assignments

Estimated Sources

Attractor Calculation
as

ideal cluster centers

Masks

Mask Calculation

Convert to Absolut Values
in dB and Capping

Input
(T-F Representation)

Figure 3.1.: DANet architecture (training). Graphic adapted from [7, p. 789].

In the following we describe the DANet architecture that tries to implement this idea.

Figure 3.1 shows our DANet architecture during training based on [6]. The input to the

network is the complex spectrogramX ∈ C1×FT. This input is converted into the real val-

ued magnitude spectrogram X ∈ R1×FT in decibel (dB). Furthermore, the network cappes

the magnitude spectrogram in dB at −80 dB and 200 dB to avoid large negative and pos-

itive values. The magnitude spectrogram in dB is then mapped into the K-dimensional

3.1. Utilized Methods 13

embedding space E ∈ RK×FT by four LSTM layers and one fully-connected layer.

During training the attractor points A ∈ RC×K are calculated as the ideal cluster centers

of the time-frequency bins belonging to the same speaker

ai =
yiET

∑ f ,t yi
i = 1, 2, . . . , C (3.1)

using the true source assignment Y ∈ RC×FT. The true source assignment can be the IBM,

IRM, or the WFM.

Using the attractor points the DANet estimates the mask m̂i ∈ R1×FT for speaker i by

calculating the distance between the time-frequency bins and the attractor points in the

embedding space

di = aiE i = 1, 2, . . . , C (3.2)

and assigning each time-frequency bin to the source of the attractor point that it is closest

to in the embedding space

m̂i = H(di) i = 1, 2, . . . , C (3.3)

whereH(di) is the softmax or sigmoid function

H(di) =


softmax(di, f t) =

exp(di, f t)

∑C
j=1 exp(dj, f t)

sigmoid(di, f t) =
1

∑C
j=1(1+exp(−dj, f t)

. (3.4)

Using the estimated masks M̂ ∈ RC×FT the estimated complex source spectrograms

Ŝi ∈ C1×TF for each speaker i are calculated as

Ŝi = X � m̂i i = 1, 2, . . . , C (3.5)

where � is the element-wise multiplication.

The training objective of the DANet is to minimize the MSE loss function

L =
1

C · F · T
C

∑
i=1
‖Si − Ŝi‖2

2 (3.6)

between the estimated source signals Ŝi and the true source signals Ŝi.

Because the true source assignments Y are unknown during the inference of the DANet,

the network architecture changes from training to inference. Figure 3.2 shows the DANet

inference architecture. The network architecture from the spectrogram input X to the

embedding E, which contains all trainable parameters, is the same for training and infer-

ence. What changes is the way the attractor points are calculated. During the inference

the k-means clustering algorithm is used to identify clusters of time-frequency bins in the

embedding space and the resulting cluster centers are chosen to be the attractor points.

14 3. Methods

Estimated Sources

DANet
(inference)

4 (B)LSTM Layers

Fully-connected
Layer

Embedding

Attractors

Attractor Calculation
with k-means

as cluster centers

Masks

Mask Calculation
 k-means cluster

Magnitude Spectrogram

Convert to Absolut Values
in dB and Capping

Input
(T-F Representation)

Figure 3.2.: DANet architecture (inference). Graphic adapted from [7, p. 789].

3.1. Utilized Methods 15

Using these attractor points the estimated binary mask is equivalent to the cluster assign-

ments in k-means.

Our implementation differs from the DANet implementation from Chen et al. [6] in

two ways. First, Chen et al. do not describe capping the magnitude values at −80 dB

and 200 dB. Second, we use the complex spectrograms in the MSE loss function L. In

contrast, Chen et al. do not explicitly mention if they use the complex or real-valued

magnitude spectrogram in the loss function. Furthermore, Chen et al. use the squared

error and not the mean squared error for their loss function. We use the mean squared

error to be able to better interpret the value of the loss function.

The main disadvantages of the DANet are that the architecture differs between training

and inference and that it uses k-means during inference, which is computationally expen-

sive. To overcome these disadvantages Luo et al. propose the Anchored Deep Attractor

Network, which is presented in the next section.

3.1.2. Anchored Deep Attractor Network (ADANet)

Evaluating the experiments of the previously described DANet the authors, Chen, Luo,

and Mesgarani, observed that the attractor points always lie in similar regions as shown

in figure 3.3. Based on this observation, they proposed two further methods to find the

attractor points in addition to k-means in [7].

Figure 3.3.: PCA of attractor points from 10.000 utterances. A1 and A2 highlight regions
of attractor point pairs. Edited graphic from [6, p. 249].

1. Fixed attractor points: The first idea mentioned in [6] and [7] is to use a pair of

fixed attractor points (one attractor point for each speaker). E.g. the cluster centers

of regions A1 in figure 3.3 could be used as the fixed pair of attractor points.

2. Anchor points: The second idea is to use anchor points to get an estimated source

assignment Ŷ, which is then used to calculate the attractor points using

16 3. Methods

equation 3.1. The position of the anchor points are also learned during the training

of the ADANet. This method can also be seen as reducing the k-means algorithm

to one single expectation maximisation (EM) step with an intelligent initialization

of the cluster centers for the expectation step with the anchor points.

Estimated Sources

Anchored DANet
(training and inference)

4 (B)LSTM Layers

Fully-connected
Layer

Embedding

Attractors

Attractor Calculation
and selection of

best attractor combination

Masks

Mask Calculation

Estimated Source Assignments

Source Assignment Esitmation
with Anchors

Magnitude Spectrogram

Convert to Absolut Values
in dB and Capping

Input
(T-F Representation)

Figure 3.4.: ADANet architecture. Graphic adapted from [7, p. 789].

The second idea, which leads to the ADANet is explained in detail in this section.

Figure 3.4 show the architecture of the ADANet. The left part is equivalent to the DANet.

What changes is the way the attractor points are calculated illustrated on the right side

of the figure. The ADANet uses N anchor points ψj ∈ R1×K to estimate the source

assignment where N is chosen to be greater than or equal to the number of speaker C.

Each anchor point functions as a reference point for a probable attractor point position.

3.1. Utilized Methods 17

The anchor points are initialized randomly and the probable anchor point positions are

learned during the training of the network, which strongly correlate with the attractor

point positions.

For all (N
C) combinations of the anchor points the resulting estimated source assign-

ment is calculated in the following way. Let Ψp ∈ RC×K be the p-th combination of C
anchor points with p = 1, 2, . . . (N

C). (E.g. Ψ1 = [ψ1 ψ2]
T) For each combination p the

distance between the time-frequency points and the anchor points of this combination is

calculated similar to equation 3.2 as

Dp = ΨpE, p = 1, 2, . . .
(

N
C

)
. (3.7)

Afterwards, the estimated source assignment for the combination p is calculated as

Ŷp = so f tmax(Dp). (3.8)

In the following, equation 3.1 is used to calculate the attractor points Ap ∈ RC×K for

each possible source assignment p in the (N
C) combinations resulting in the same number

of possible attractor point combinations. Now the best attractor point combination is

selected, which is the combination of attractor points where the distance between the

two closest attractor points in the combination is maximal. This combination is found

using the following equations.

A similarity matrix Γp ∈ RC×C that contains the pairwise similarity between the attrac-

tor points in the combination p is calculated as

Γp = ApAT
p (3.9)

where Ap contains the row vectors of the attractor points in the combination with the

index p. For example for 3 speakers (C = 3) A1 would have the following structure

A1 =


· · · a1 · · ·
· · · a2 · · ·
· · · a3 · · ·

 ∈ R3×K.

This results in the following similarity matrix

Γp=1 =


〈a1, a1〉 〈a1, a2〉 〈a1, a3〉
〈a2, a1〉 〈a2, a2〉 〈a2, a3〉
〈a3, a1〉 〈a3, a2〉 〈a3, a3〉


where 〈ai, aj〉 denotes the dot product between attractor ai and aj. This dot product mea-

sures the similarity between the two attractor points and is maximal if ai and aj are iden-

tical. The absolute value of the dot product is minimal if the two vectors ai and aj are

orthogonal. The dot product reaches its minimum (a negative value) if the two vectors ai

18 3. Methods

and aj are pointing in opposite directions from the origin.

The maximum value of the non-diagonal values of Γp is selected as

γp = max{Γpi,j}, i 6= j (3.10)

which represents the attractor point pair in the combination p with the largest similarity.

Finally, the combination of attractor points Ap, for which the largest in-set similarity

γp between the two most similar attractor points is minimal, is selected as

A = argmin
Ap

{γp}, p = 1, 2, . . . ,
(

N
C

)
(3.11)

which is the combination of attractor points, for which the distance between the two

closest attractor points in the combination is maximal. Now this best attractor point

combination A is used to calculate the estimated masks and estimated signal sources,

which is done analogously to the DANet.

The ADANet eliminates the disadvantages of the DANet by introducing anchor points,

which allow the architecture to be the same for training and inference and reduce k-

means clustering to one EM step, which is directly integrated in the network.

One difference between our ADANet implementation and the implementation by Lue

et al., is that Luo et al. use a salient weight threshold keeping 90% of the salient time-

frequency bins for the attractor calculation while the other 10% are not taken into account

for the attractor calculation (equation 3.1). We do not investigate this difference because it

only improves the scale-invariant source-to-noise ratio (SI-SNR) by less than 5% [7] and it

is not clear how to implement this threshold in real-time. For example with a fixed salient

weight threshold the results depend on the level of the audio signal. A relative threshold

is more complicate to implement in real-time because it has to be updated using e.g. a

moving average.

In the following section, we describe the ODANet a causal version of the ADANet.

3.1.3. Online Deep Attractor Network (ODANet)

The ODANet by Han et al. [2] has the same network architecture as the ADANet in terms

of the LSTM layers and the dense layer but processes the spectrogram frame by frame.

Because the network architecture including the trainable weights does not change, Han

et al. suggest to use the weights of a previously trained ADANet in the ODANet. What

changes is the way the attractor points are calculated.

For the first frame (t = 1) in the ODANet the attractor points are calculated using the

anchor points just like in the ADANet. Therefore, the ODANet architecture for the first

frame is similar to the ADANet architecture shown in figure 3.4. This figure is adapted

specifically for the first frame of the ODANet in the appendix A.2 by changing the di-

mensions from FT to F indicating that the ODANet processes single frames.

3.1. Utilized Methods 19

For every following frame the previous attractor points At−1 are used instead of the

anchor points to estimate the source assignments

Ŷt = softmax(At−1Et). (3.12)

Based on this source assignment estimation Ŷt the current attractor point position for

speaker i is estimated equivalent to equation 3.1 as

ât,i =
ŷt,iET

t

∑ f ŷt,i
i = 1, 2, . . . , C. (3.13)

To avoid that the attractor points jump around between time frames (e.g. during silence

frames), Han et al. propose to use an exponentially weighted moving average for updat-

ing the position of the attractor points as follows

at,i := αt,iât,i + (1− αt,i)at−1,i. (3.14)

Furthermore, they propose two ways to calculate the update coefficient αt,i

1. context-based weighting,

2. dynamic weighting.

In context-based weighting the update coefficient αt,i is calculated as

αt,i =
∑ f ŷt,i

∑t
j=t−τ ∑ f ŷj,i

(3.15)

where τ is the number of time frames taken into the context-window. This means that

if there is a large number of time-frequency bins belonging to speaker i in the current

time frame t compared to the number of time-frequency bins belonging to speaker i in

the previous τ time frames, then the update coefficient αt,i for speaker i at time frame t
is high. With a high update coefficient the current estimate ât,i has a large impact on the

value at,i while the old value at−1,i is discounted stronger.

In the dynamic weighting the update coefficients are learned by the network as

αt,i =
gt,i ·∑ f ŷt,i

ft,i ·∑t−1
j=t−τ ∑ f ŷj,i + gt,i ·∑ f ŷt,i

(3.16)

where gate gt,i and forget-gate ft,i are calculated as

gt,i = σ(hl=4
t−1Wg + XtUg + at−1Jg + bg) (3.17)

ft,i = σ(hl=4
t−1Wf + XtUf + at−1Jf + bf) (3.18)

20 3. Methods

where hl=4
t−1 ∈ R1×N4 is the output of the fourth LSTM layer with N4 units at time t− 1,

Xt is the magnitude spectrogram at time t, and at−1 is the attractor point for speaker i at

time t − 1. The other parameters Wg, Wf ∈ RN4×K, Ug, Uf ∈ RF×K, Jg, Jf ∈ RK×K, and

bg, bf ∈ R1×K are trainable weights.

For this work, we do not implement the dynamic weighting because it only slightly

improves the SDR by 5% according to [2, p. 363, table 1] and it is computationally more

complex than the context based weighting mechanism.

Online DANet
(following frames)

4 LSTM Layers

Fully-connected
Layer

Embedding

Attractors

Attractor Calculation
with context-based weighting

or dynamic weighting

Masks

Mask Calculation

Estimated Source Assignments

Source Assignment Esitmation
with previous Attractors

)

Mag. Frame-Spectrogram

Estimated Sources

Convert to Absolut Values
in dB and Capping

Input-Frame
(F Representation)

Figure 3.5.: ODANet architecture (following frames t > 1). Red lines represent recurrent
connections with time delay. The dashed box with rounded edges represents
a super-process that combines the entire attractor calculation for the follow-
ing frames and the attractor calculation for the for the first-frame, which is
shown in the appendix in figure A.2 on page 63. Graphic adapted from [7, p.
789].

3.1. Utilized Methods 21

Figure 3.5 shows the ODANet architecture for the frames following the first frame with

t > 1. The red line from the attractors to the source assignment estimation represents the

recurrent connection required for the source assignment estimation with the attractors

from the previous time step (equation 3.12). Another recurrent connection is required for

calculating the update coefficient in the context-based weighting (equation 3.15). Here

the recurrent connection contains the history of

∑
f

ŷt,y (3.19)

for t in t− τ to t− 1.

The entire attractor calculation for the first frame and the following frames of the

ODANet is implemented in a super-process represented by the dashed box with rounded

edges in figure 3.5 and figure A.2 in the appendix on page 63. This super-process has a

first_frame flag, which is set to zero for the first frame and one for every following

frame. Based on this flag the super-process calculates the attractor points using the an-

chor points (for the first frame) or the previous attractor points for every following frame.

All weights in the ODANet are initialized with weights from a previously trained

ADANet also known as curriculum training [2]. Due to time constrains we use the

weights from the ADANet directly in our ODANet experiments without further train-

ing the ODANet.

3.1.4. Compressed Long Short-term Memory (CLSTM)

In this section, we first present the compression method for RNNs by Prabhavalker et

al. [4] in general. Then we detail how this method can be applied to LSTMs and thus

leads to the CLSTMs.

The compression method by Prabhavalker et al. is a generalization of the method from

Xue et al. [33]. Both methods are low-rank factorization compression methods. In con-

trast to the method by Xue et al. [33], which only compresses the kernel using a SVD,

the method by Prabhavalker et al. [4] jointly optimizes the recurrent kernel and kernel

of the following layer. This is achieved by a low-rank factorization of the recurrent ker-

nel Wl
h ∈ RNl×Nl , splitting it into a projection Pl ∈ RNl×rl and a back-projection matrix

Zl
h ∈ Rrl×Nl , followed by an adaption of the kernel Wl+1

x ∈ RNl×Nl+1 of the next layer to

match the projection matrix Pl . 2

This idea is illustrated in figure 3.6. Figure 3.6a shows layer l of a general RNN and

figure 3.6b shows the compressed version. In the compressed version the output hl
t ∈

R1×Nl is multiplied with the projection matrix Pl resulting in the projected output h̃l
t ∈

R1×rl , which is used in the recurrent part of layer l and passed to the next layer l + 1. In

the following, we explain the calculation of the matrices for the compressed RNN.

2The superscripts l and l + 1 on the weight matrices are layer indices and not exponentials.

22 3. Methods

(a)

(b)

Figure 3.6.: The general RNN (a) is compressed in (b) by jointly factorizing recurrent ker-
nel Wl

h and kernel Wl+1
x to Zl

h and Zl+1
x using the same projection matrix Pl .

The dashed lines represent borders between layers. The graphic is adapted
from [4, p. 5971] (see footnote 3).

For the general RNN the outputs hl
t ∈ R1×Nl and hl+1

t ∈ R1×Nl+1 are calculated as

hl
t =σ(hl−1

t Wl
x +hl

t−1Wl
h +bl) (3.20)

hl+1
t =σ(hl

tW
l+1
x +hl+1

t−1Wl+1
h +bl+1) (3.21)

for layer l with Nl units and layer l + 1 with Nl+1 units.3 Where bl ∈ R1×Nl and bl+1 ∈
R1×Nl+1 are the biases of layer l and l + 1.

In the compressed version the outputs hl
t ∈ R1×Nl and hl+1

t ∈ R1×Nl+1 are calculated

as

hl
t =σ(hl−1

t Wl
x +hl

t−1PlZl
h +bl) (3.22)

hl+1
t =σ(hl

tP
lZl+1

x +hl+1
t−1Wl+1

h +bl+1) (3.23)

by replacing the recurrent kernel Wl
h ∈ RNl×Nl (from equation 3.20) with the projection

matrix Pl ∈ RNl×rl and recurrent kernel back-projection matrix Zl
h ∈ Rrl×Nl . These ma-

trices are calculated using a SVD

SVD: Wl
h = Ul

hΣl
hVl

h
T

(3.24)

≈ (Ũl
hΣ̃l

h)Ṽ
l
h

T
= PlZl

h (3.25)

3We change the notation from [4] in the following way. For all matrices with subscript x the layer index
l is increased by one. The matrix vector multiplications are transposed because this is closer to the Keras
implementation of a SimpleRNNCell [34].

3.1. Utilized Methods 23

resulting in Ul
h ∈ RNl×Nl , the diagonal matrix Σl

h ∈ RNl×Nl containing the singular val-

ues, and Vl
h ∈ RNl×Nl . Now the matrices (Ul

h, Σl
h, and Vl

h) are truncated by taking only

the first rl columns of Ul
h and the first rl rows of Vl

h
T corresponding to the rl largest singu-

lar values. Using the truncated matrices Ũl
h ∈ RNl×rl , Σ̃l

h ∈ Rrl×rl , and Ṽl
h

T
∈ Rrl×Nl the

matrices Pl and Zl
h are calculated as shown in equation 3.25. According to the proven

Eckart–Young–Mirsky theorem, PlZl
h is the best rank rl approximation of the matrix

Wl
h [35, 36].

In other words the output hl
t ∈ R1×Nl is projected from the Nl-dimensional space onto

a smaller rl-dimensional space. This projected output h̃l
t = hl

tP
l ∈ R1×rl is not only used

for the recurrent part of the layer l but also passed to the next layer l + 1. To preserve

the learned functionality of the layer l + 1, the kernel Wl+1
x from 3.21 is replaced with a

back-projection matrix Zl+1
x ∈ Rrl×Nl+1 in equation 3.23, which is calculated as

Zl+1
x = argmin

Z
‖PlZ−Wl+1

x ‖2
F (3.26)

Now PlZl+1
x is the rank rl approximation of Wl+1

x with minimal distance in the Frobenius

norm ‖ · ‖F .

Prabhavalkar et al. [4] propose to select the rank rl of layer l as

rl = argmax
1≤k≤Nl

∑k
j=1 σl

j
2

∑Nl
j=1 σl

j
2 ≤ λ

 (3.27)

based on the singular values σl
j with σl

1 ≤ σl
2 ≤ . . . ≤ σl

Nl
from the SVD of Wl

h (equation

3.24). Thereby, the rank rl is selected so that λ-percent of the energy of the singular

values in Σl
h are kept in the truncation. We call the threshold λ the compression threshold.

Prabhavalkar et al. found out through experiments that the compression threshold λ =

0.6 works best for their application of large vocabulary conversational speech recognition

(LVCSR) acoustic modeling. With this threshold they are able to compress the LVCSR

acoustic model to one third of its original size with only 5% increase in the word error

rate (WER).

To apply this compression method to LSTMs Prabhavalker et al. [4] propose to combine

the kernel and the recurrent kernel weight matrices of the input gate, output gate, forget

gate, and the cell to a single kernel W̄l
x ∈ RNl−1×4Nl and a single recurrent kernel W̄l

h ∈
RNl×4Nl as

W̄l
x = [Wl

ix, Wl
ox, Wl

f x, Wl
cx] (3.28)

W̄l
h = [Wl

ih, Wl
oh, Wl

f h, Wl
ch]. (3.29)

Now the projection matrix Pl and the back-projection kernel Z̄l+1
x ∈ Rrl×4Nl+1 and back-

projection recurrent kernel Z̄l
h ∈ Rrl×4Nl are calculated in the same way as previously

24 3. Methods

described. The back-projection matrices Z̄l
x and Z̄l

h can be decomposed analogously to

the composition in equation 3.28 and 3.29.

Figure 3.7b shows where the projection matrix Pl is added to the standard LSTM cell

shown in figure 3.7a. Appendix A.1 provides all equation for the standard LSTM cell as

well as the compressed version of these equations.

(a) LSTM Cell [37] (b) Compressed LSTM Cell

Figure 3.7.: The LSTM Cell (a) and its compressed version (b)

We have chosen this compression method because it reduces the number of operations

and thus also the run-time of ODANet. This is of decisive importance for the real-time

optimization of ODANet on an embedded system. In section 3.2.2 we examine in detail

how many operations can be saved when applying the compression method by Prab-

havalkar et al. to the ODANet.

In the following, we explain how the compression method effects the number of op-

erations of a RNN in general. For simplicity let us assume the number of input units is

equal to the number of output units Nl−1 = Nl = n. Then the size of the weight matrices

are n× n for the kernel and recurrent kernel. Furthermore, the bias vector has size 1× n.

The number of operations o is proportional ∼ to the size of the weight matrices. To fur-

ther simplify the estimation we neglect adding the bias vector because the computational

expense of the matrix multiplication is much higher than the computational expense of

adding the bias vector. This way the number of operations of a general RNN o with n
input units and n output units is proportional to

o ∼ 2 · n · n. (3.30)

For the compressed version of the general RNN the weight matrices are Zl
x, Pl , and Zl

h,

which have the sizes rl−1 × n, n× rl , and rl × n respectively. Let us assume rl−1 = rl = r.

Then the number of operations of the compressed RNN õ is proportional to

õ ∼ 3 · n · r. (3.31)

3.2. Proposed Methods 25

For an actual reduction of the number of operations õ has to be smaller than o. This is the

case if r is smaller than 2
3 n

õ < o (3.32)

3 · n · r < 2 · n · n (3.33)

r <
2 · n

3
. (3.34)

Making the same simplification for an LSTM, which we made previously for the RNN,

the number of operation of a LSTM o∗ is proportional to

o∗ ∼ 8 · n · n (3.35)

because each LSTM has 4 kernels and 4 recurrent kernels of size n× n, one for each the

input gate, output gate, forget get, and the cell of the LSTM. In the CLSTM the kernels

are replaced with matrices of size rl−1× n and the recurrent kernels with matrices of size

n × rl . Again assuming that rl−1 = rl = r for simplicity, this results in the following

proportion for the number of operations of the CLSTM

õ∗ ∼ 9 · n · r. (3.36)

where the 9th n× r matrix is the projection matrix. Therefore, there is an actual reduction

of the number of operation õ∗ in the CLSTMs if r is smaller than 8
9 n

õ∗ < o∗ (3.37)

9 · n · r < 8 · n · n (3.38)

r <
8 · n

9
. (3.39)

For the actual size reduction in the number of weights from the ODANet to the CO-

DANet with CLSTMs see table 4.6 on page 41.

3.2. Proposed Methods

In this section, we present an optimized way to initialize the anchor points and how

we apply the previously described compression method to the ODANet resulting in our

CODANet.

3.2.1. Sphere Anchor Point Initialization

For the first ADANet experiments we plot the movement of the anchor points in the

embedding from epoch to epoch during training in figure 3.9. Based on the observations

26 3. Methods

on the anchor point movement, which we describe in the following, we thought of two

alternative ways to initialize the anchor points for the training of the ADANet.

In the first experiments we initialize the anchor points randomly, which leads to a

Gaussian distribution as shown in figure 3.8a for the two dimensional case. In this dis-

tribution the initial values of the anchor points have a high probability to be close to the

origin and have only a small length. As described in section 3.1.2 the anchor point com-

bination that leads to the maximal distance between the two closest attractor points is

selected. For simplicity let us assume that the attractor points are relatively close to the

anchor points. We want the ADANet to use all N anchor points and use them to select

the features (directions) that are best for separating the sources.

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

30
0.2
0.4
0.6
0.8
1

(a) Random

0 1

1

-1

-1

(b) Sphere

0 1

1

-1

-1

(c) Sphere Pair

Figure 3.8.: Proposed anchor point initialization methods

A worst case for the anchor point initialization and the learning of good anchor points

in the two speaker scenario (C = 2) would be that all anchor points are initialized close

to the origin except for two anchor points. In this case the two anchor points that are not

close to the origin are selected most often as the best anchor points for the separation. In

the following back propagation step only the selected anchor points are optimized and

therefore only these two anchor points that are not close to the origin will be optimized

most often. In this case the other anchor points are neglected during the training. This

behavior can be observed in anchor point movement figure 3.9.

In order to avoid this problem we propose the Sphere anchor point initialization method.

In the Sphere anchor point initialization method the anchor points are initialized ran-

domly followed by a normalization step, which normalizes the anchor points to have

length 1 in the Euclidean norm. The pseudo code for this method is given in algorithm

1. The first line loops over the number of anchor points N. In line 2 the anchor point

ψp ∈ R1×K is initialized using the K-dimensional normal distribution NK with the mean

µ ∈ RK and the covariance matrix Σ ∈ RK×K. In line 3 the anchor point is normalized by

dividing through its Euclidean norm ‖ · ‖2.

With the Sphere anchor point initialization method the anchor points are randomly

distributed on the Sphere with radius one around the origin as shown in figure 3.8b for

K = 2.

The second anchor point initialization method we propose goes one step further. We

3.2. Proposed Methods 27

Component 1

1.0 0.5 0.0 0.5 1.0 1.5 Co
mpo

ne
nt

2

0.15
0.10

0.05
0.00

0.05
0.10
0.150.20

Co
m

po
ne

nt
 3

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Anchor point movement over epochs start
end
origin

(a) Perspective 1

Component 1

1.0
0.5

0.0
0.5

1.0
1.5 Component 2

0.150.100.050.000.050.100.150.20

Co
m

po
ne

nt
 3

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Anchor point movement over epochs start
end
origin

(b) Perspective 2

Figure 3.9.: PCA of anchor point movement during training from epoch to epoch with
random anchor point initialization for ADANet with BLSTMs. Please note
that the axis of principal component 1 has a much larger span than the axis of
the principal components 2 and 3.

28 3. Methods

Algorithm 1 Proposed Sphere Anchor Point Initialization Method

1: for p ∈ {0, 1, . . . , N} do
2: ψp := NK(µ, Σ)

3: ψp := ψp/‖ψp‖2
4: end for

call this method the Sphere Pair anchor point initialization method because we initialize

pairs of anchor points randomly on the sphere with radius one around the origin. This

is done by initializing the first N/2 anchor points using the previously described Sphere

anchor point initialization method. The second half of the anchor points are then initial-

ized as the point-symmetric partners of the first half of the anchor points. This is done

by multiplying each of the anchor points in the first half with −1 as shown in line 6 of

algorithm 2.

Algorithm 2 Proposed Sphere Pair Anchor Point Initialization Method

1: for p ∈ {0, 1, . . . , N/2} do
2: ψp := NK(µ, Σ)

3: ψp := ψp/‖ψp‖2
4: end for
5: for p ∈ {N/2, N/2 + 1, . . . , N} do
6: ψp := −1 ∗ψp−N/2
7: end for

3.2.2. Compressed Online Deep Attractor Network (CODANet)

In this section, we describe how we applied the compression method by Prabhavalkar

et al. [4] described in section 3.1.4 to the ODANet to reduce the size of the network and

the number of operations, which should result in a smaller processing time for a single

frame.

To compress the ODANet we replace the LSTM layers with CLSTM layers. Prab-

havalkar et al. do not explicitly describe what to do with the first and the last layer.

For the first layer we use the CLSTM with out compressing the kernel weights of the

LSTM. If we use a CLSTM for the last LSTM layer in the ODANet the output of this layer

will be the projected output h̃l
t, which is not compatible with the expected input to the

fully-connected layer following the LSTM layers.

We see the following options to deal with this problem:

1. Do not compress the output of the last LSTM layer.

2. Add an additional layer between the last LSTM layer and the fully-connected layer

that does the back-projection of h̃l
t with the inverse of Pl=4.

3. Use equation 3.26 to calculate a back-projection kernel based on the kernel of the

fully-connected layer.

3.2. Proposed Methods 29

Option 3 is selected because it continues the idea of the compression method of Prab-

havalkar et al. and thus leads to a further compression of the network. The second option

is not selected because adding an additional layer between the last LSTM and the fully-

connected layer would increase the number of operations in the network again. The first

option of not compressing the output of the last LSTM layer is not selected because to

implement this we would need to insert the projection matrix Pl at two different places

in the LSTM architecture.

In the following we calculate the number of weights for the ODANet and the CO-

DANet. The number of weights for the ODANet is the sum of

• the number of weights in the LSTM layers

size(LSTMs) =
4

∑
l=1

(4 · Nl−1 · Nl︸ ︷︷ ︸
kernel

+ 4 · Nl · Nl︸ ︷︷ ︸
recurrent kernel

+ 4 · Nl︸ ︷︷ ︸
bias

) (3.40)

where N0 = F is the input dimension, which is the number of frequency bins F and

Nl is the number of units in the l-th LSTM layer,

• the number of weights in the dense layer

size(dense) = N4 · K · F (3.41)

with K the embedding dimension,

• and the number of weights for the anchor points

size(anchors) = K · N (3.42)

where N is the number of anchor points.

size(ODANet) =
4

∑
l=1

(4 · Nl−1 · Nl + 4 · Nl · Nl + 4 · Nl) + N4 · K · F + K · N (3.43)

For example with Nl = 600 for l = 1, . . . , 4, F = 129, K = 20, and N = 4 this results in

size(ODANet) = 10, 399, 200︸ ︷︷ ︸
size(LSTMs)

+ 1, 550, 580︸ ︷︷ ︸
size(dense)

+ 80︸︷︷︸
size(anchors)

= 11, 949, 860 (3.44)

For the CODANet we replace all LSTM layers with CLSTM layers, which changes the

equations 3.40 in the following way. The number of weights in the CLSTMs are

size(CLSTMs) =
4

∑
l=1

(4 · rl−1 · Nl︸ ︷︷ ︸
comp. kernel

+ Nl · rl︸ ︷︷ ︸
projection matrix

+ 4 · rl · Nl︸ ︷︷ ︸
comp. recurrent kernel

+ 8 · Nl︸ ︷︷ ︸
bias

) (3.45)

with rl the rank of layer l and r0 = F the input dimension. The dense layer now takes the

30 3. Methods

projected output of the fourth CLSTM layer, which also reduces its size to

size(comp. dense) = r4 · K · F (3.46)

The rank rl for each layer is determined using equation 3.27 and depends on the singular

values of the recurrent kernel Wl
h. For example with a compression threshold τ = 0.7 the

compressed weights of the previous example with Nl = 600 for l = 1, . . . , 4, F = 129,

K = 20, and N = 4 could have the following ranks:

r1 = 251, r2 = 234, r3 = 205, r4 = 177 (3.47)

This results in a total number of weights for the CODANet of

size(CODANet) = 4, 576, 200︸ ︷︷ ︸
size(CLSTMs)

+ 459, 240︸ ︷︷ ︸
size(comp. dense)

+ 80︸︷︷︸
size(anchors)

= 5, 035, 520 (3.48)

which is a reduction of more than 50% compared to the size of the ODANet. In the results

section 4.3.4 we see how this reduction in the size of the network effects the processing

time and the performance of the CODANet.

31

4. Evaluation

In this chapter, we first explain the experimental setup, which includes the used dataset

and its preprocessing for the training, as well as the hardware we use in our experiments.

Second, we describe how we measure the speech separation performance and the pro-

cessing time per frame. Finally, we present the results of our experiments.

4.1. Experimental Setup

In this section, we present the used WSJ0-2mix dataset, its preprocessing for the training,

the postprocessing of network output, and the hardware we use to train our NNs and to

evaluate the processing time, which are a desktop PC and the NVIDIA Jetson Nano.

Dataset

For the training and evaluation of our NNs we use the WSJ0-2mix dataset introduced

in [5] and also used in the mentioned related work on speech separation with NNs [2, 3,

5–7, 12–20, 22–24]. Generated from the Wall Street Journal (WSJ0) corpus the WSJ0-2mix

dataset contains time domain mixture utterances of averagely 6 seconds as well as the

ground truth speech signal of the two speakers from which the mixture utterances are

generated. The WSJ0-2mix is divided into the following three sets:

1. A 30 hour training set generated by randomly selecting utterances of different speak-

ers from the WSJ0 training set si_tr_s, and mixing them at various signal-to-noise

ratios between 0 dB and 10 dB.

2. A 10 hour validation set generated just like the training set.

3. A 5 hour evaluation set generated using utterances from 16 speakers from the WSJ0

development set si_dt_05 and evaluation set si_et_05 while using different

speakers from those in the previous training and validations sets.

While this dataset has become a current standard in the speech separation research, its

disadvantage is that the WSJ0 contains professional recordings without background noise

of professional speakers reading from the Wall Street Journal newspaper, which are very

different from everyday audio recordings at cocktail parties.

32 4. Evaluation

Preprocessing and Postprocessing for Training and Evaluation

For training our DANet implementation versions, which operate in the time-frequency

domain, we preprocess the waveform audio data in the WSJ0-2mix dataset once by down-

sampling it and applying an STFT with the parameters shown in table 4.1. The resulting

complex spectrograms are saved into a h5py-file, which allows fast access to the spectro-

gram data for the training of the networks [38].

Preprocessing Parameter Value

Sampling rate 8 kHz
Window length 32 ms
Hop size 8 ms
Window Root Hann Window

Table 4.1.: Preprocessing parameters

For the training of our implementations we split each utterance spectrogram into meta-

frames of 400 consecutive time frames. Because many utterances start with silent frames,

we apply a random offset at the beginning. This offset is a random number between zero

and the remainder of the division of the total number of time frames per utterance with

the meta-frame size.

For the speech separation performance evaluation each utterance is zero padded at the

end, so that the utterance is exactly divisible by the meta-frame size. After the processing

of the network, the meta-frames for each utterance are concatenated again. Finally a we

apply an inverse short-time Fourier transform (ISTFT) and evaluate the speech separation

performance of the predicted time domain signals using the SI-SNR and SDR presented

in section 4.2.

Hardware

We train our implementations on a desktop PC, with a NVIDIA Corporation GP102 TI-

TAN X GPU and an Intel R©CoreTM i7-5930K Prozessor central processing unit (CPU), try-

ing optimize it for real-time speech separation on the NVIDIA Jetson Nano. The NVIDIA

Jetson Nano is an embedded computer board equipped with

• a 128-core Maxwell GPU with a performance of up to 512 GFLOPS (FP16) at 921

MHz,

• a quad-core ARM A57 CPU operating at 1.43 GHz,

• 4 GB on-board memory with 4ch x 16-bit LPDDR4 at 1600 MHz with a peak band-

width of 25.6 GB/s [11].

4.2. Evaluation Methods 33

Especially the GPU should make this embedded computer suitable for running NN im-

plementations. Because the NVIDIA Jetson Nano GPU processes FP16 operations, we

also evaluate our best ODANet experiment number 3.2 with FP16 weights in the NN in-

stead of FP32 weights, which shows that the SI-SNR performance is almost the same for

FP16 and FP32.

4.2. Evaluation Methods

To measure the speech separation performance of the implementations we use the SI-

SNR and the SDR, which are calculated in the time domain. The processing time for a

single frame is measured on the hardware presented in section 4.1 using the system time

in Python and includes the time for the fast Fourier transform (FFT) and the inverse fast

Fourier transform (IFFT) of the frame.

4.2.1. Scale-invariant Source to Noise Ratio (SI-SNR)

Following the notation of Luo et al. [16] the SI-SNR is defined as

SI-SNR := 10 log10
‖starget‖2

‖enoise‖2 (4.1)

with

starget =
〈ŝ, s〉 · s
‖s‖2 (4.2)

as the orthogonal projection of ŝ, the estimated audio signal, onto s, the true audio signal,

and

enoise = ŝ− starget (4.3)

as the difference between ŝ and starget as shown in figure 4.1. To ensure scale-invariance

both s and ŝ are normalized to have a mean of zero [16].

s

ŝ

starget

enoise

Figure 4.1.: Illustration of starget as the orthogonal projection of ŝ onto s and enoise as the
difference between ŝ and starget.

4.2.2. Source-to-Distortion Ratio (SDR)

A similar measure, which is used in the literature, is the SDR, which is defined by Vincent

et al. [39] and considers the following error sources.

34 4. Evaluation

• einterf the interference error caused by the interference of the other signal sources

e.g. other speakers,

• e∗noise the noise error caused by sensor noise,

• eartif the artifacts error, which is the remaining error not caused by interference or

noise.

Based on these errors Vincent et. al. [39] define the following quality measures

• the source-to-distortion ratio (SDR)

SDR := 10 log10
‖starget‖2

‖einterf + e∗noise + eartif‖2 , (4.4)

• the source-to-interferences ratio (SIR)

SIR := 10 log10
‖starget‖2

‖einterf‖2 , (4.5)

• the sources-to-noise ratio (SNR)

SNR := 10 log10
‖starget + einterf‖2

‖e∗noise‖2 , (4.6)

• the sources-to-artifacts ratio (SAR)

SAR := 10 log10
‖starget + einterf + e∗noise‖2

‖eartif‖2 . (4.7)

We only report the SDR in our evaluation for specific experiments, because calculating

the quality measures by Vincent et al. takes more than two times as long as calculating

the SI-SNR.

4.2.3. Measurement of Processing Time per Frame

An important criterion for real-time processing is the time it takes to process a single

frame using the ODANet or the CODANet. For real-time processing it is a necessary

requirement that the processing time for each frame is less than the hop size of 8 ms.

However, for real-time processing this is not a sufficient requirement. To measure the

processing time of a single frame on the PC or the NVIDIA Jetson Nano, which are pre-

sented in section 4.1, with the ODANet or the CODANet we use a script that splits the

time domain data into frames. For each of these frames we measure the processing time

by saving the system time into a start_time variable. Followed by the processing of

the frame, which includes the steps of a FFT, the prediction of the speech sources using

4.3. Results 35

the ODANet or the CODANet, and the IFFT of these predicted sources. After the pro-

cessing, the system time is subtracted from the start_time resulting in the processing

time, which is saved for each frame. In the results section we evaluate this processing

time per frame with different statistical methods like the mean and variance. An im-

portant measurement is also the number of frames exceeding the output buffer size (e.g.

8 ms), because if the output buffer for the sound card is not filled in time, then click sound

could be heard in the audio output.

Our implementations of ODANet and CODANet use a sampling rate of 8 kHz, as do

the implementations in [2, 6, 7], in order to keep the input data quantity and thus the

computational complexity small. In our evaluation of the processing time, we do not

take into account the possible effort required to downsample the audio signal to 8 kHz,

which is necessary if the used sound card does not support this sampling rate. We do not

take this processing time into account because we expect it to be relatively small.

4.3. Results

In this section, we present our findings on the proposed anchor point initialization meth-

ods, the impact of the optimizer and the number of LSTM units on the ADANet, as well

as the hyper-parameter tuning for the ODANet, and the resulting run-time optimization

of the CODANet. Furthermore, we present the run-time and real-time capability of our

implementations based on the hardware. At the end of this section we present additional

findings.

4.3.1. Anchor Point Initialization Methods

In this section, we present our results for the anchor point initialization methods pro-

posed in section 3.2.1, which we evaluate in a first series of experiments. This section

is split into preliminary and final results, which lead to different conclusion. Both re-

sults are presented because based on the preliminary results we decided that Sphere is

the best anchor point initialization method for the following experiments, however the

final results, which were generated with an improved method to select the best epoch

of a training, lead to the conclusion the Sphere Pair is the best anchor point initialization

method. But we were not able to integrate this final conclusion into our later experiments.

Preliminary Results on Anchor Point Initialization Methods

For the evaluation of the anchor point initialization method we conduct two experiments

for each initialization method while the other parameters shown in table 4.2 are fixed.

We use BLSTMs with 600 units per direction in each of the four BLSTM layers, 6 anchor

points, and an embedding dimension of 20 to compare the results of our implementation

to the results in the paper [7] by Luo et al., in which they also used the same set of

36 4. Evaluation

parameters for the ADANet. Furthermore, we use the Root Mean Square Propagation

(RMSprop) optimizer with a learning rate of 0.0001 and early stopping if the validation

loss does not decrease for 10 epochs. For each experiment we selected the 3 epochs with

the lowest validation loss for each experiment and evaluated the ADANet weights after

these epochs on the test set. 1

Parameter Value

Meta-frame size 400

LSTM directonality bidirectional

Number of units per direction in LSTM Layers 600

Number of anchor points 6

Embedding dimension 20

Batch size 32

Loss function equation 3.6

Optimizer RMSprop

Learning rate 0.0001

Patience for early stopping (on val. loss) 10

Reduce learining rate on plateau not used
Table 4.2.: Fixed parameters of first experiment series evaluating the anchor point initial-

ization methods.

This setup leads to the results shown in table 4.3. The first and second column specifies

an ID and a label for each training run, respectively. For each experiment the table 4.3

only shows the results for the epoch with the best mean SDR on the test set. For each

initialization method we train the ADANet two times to see the effect of the randomness

in the weight initialization, not only in the anchor points, but also in the weights of the

LSTM layers and the dense layer, which generate an initially random mapping of the

time-frequency bins into the embedding space.

Discussing the preliminary results of these experiments, which we call the first exper-

iment series, we see that the experiment with the label Random1 has the best SDR and

SI-SNR results on the test set. But we also see that the second experiment with the label

Random2 has the worst SDR and SI-SNR value on the test set in the whole experiment

series. In comparison, the experiments Sphere1 and Sphere2 have almost as good SDR

and SI-SNR values as experiment Random1. In contrast, the experiments SpherePair1

and SpherePair2 are only slightly better than the worst experiment Random2. However,

these experiments with the Sphere Pair anchor point initialization method reach their

optimum based on the validation loss already after 29 and 28 epochs. So they need less
1In later experiments we see that there is a discrepancy between the validation loss and the SI-SNR and

SDR on the validation set, which leads us to the conclusion that the validation loss is not a good criterion
for early stopping or selecting the best epoch in a training run. For the final results we therefore continued
all training runs till epoch 50 without early stopping and used the validation SI-SNR for selecting the best
epoch.

4.3. Results 37

ID Label Epoch
SDR
on test set

SI-SNR
on test set

Validation
loss

Training
loss

1.1 Random1 50 7.5 6.3 0.239 0.068
1.2 Random2 39 7.0 5.8 0.240 0.078
1.3 Sphere1 44 7.4 6.1 0.235 0.068
1.4 Sphere2 36 7.4 6.2 0.246 0.073
1.5 SpherePair1 29 7.2 5.9 0.246 0.080
1.6 SpherePair2 28 7.2 5.9 0.241 0.085

Table 4.3.: Preliminary experimental results for the different anchor point initialization
methods Random, Sphere and Sphere Pair with two experiments for each ini-
tialization method with early stopping and selection of the best epoch based
on the validation loss.

time to reach their optimum than the other experiments. In comparison to this, the exper-

iments with the Sphere anchor point initialization method are in the middle between the

experiments with the random initialization of anchor points and the experiments with

the Sphere Pair initialization method regarding the number of epochs it takes for them to

reach their optimum.

The results with early stopping and selection of the best epoch based on the validation

loss can be summarized as follows. If we reduce the randomness of the initialization of

the anchor points, the variance in the results is reduced and the optimum based on the

validation loss is reached earlier.

Final Results on Anchor Point Initialization Methods

We continue all training runs reported previously till epoch 50 without early stopping

and used the validation SI-SNR for selecting the best epoch, because in an later experi-

ment we see that the validation loss is not a good criterion for early stopping or selecting

the best epoch in a training run, as there is a discrepancy between the validation loss

and the SI-SNR and SDR on the validation set as shown in figure 4.2. In this figure we

see that even though the validation loss does not go far below 0.24 after epoch 10, the

training loss and validation SI-SNR still decrease. We have no direct explanation for this

discrepancy and assume that there is a programming error that we have not found. That

is way we use the SI-SNR on the validation set as a workaround.

In table 4.4 we see the final experimental results for the evaluating of the different an-

chor point initialization methods, which show that the Sphere Pair initialization method

leads to the best SI-SNR results on the test set in average. However, as mentioned previ-

ously we conducted the experiment series three and four with Sphere instead of Sphere

Pair as the initialization method based on our preliminary results of this first experiment

series.

38 4. Evaluation

Figure 4.2.: Discrepancy between validation loss and validation SI-SNR shown for one
example ADANet experiment with unidirectional LSTMs with 600 units in
each layer, 6 anchor points and embedding dimension 20.

ID Label Epoch
SDR
on test set

SI-SNR
on test set

1.1 Random1 50 7.5 6.3
1.2 Random2 50 7.4 6.1
1.3 Sphere1 44 7.4 6.1
1.4 Sphere2 50 7.9 6.7
1.5 SpherePair1 49 7.8 6.7
1.6 SpherePair2 50 7.9 6.8

Table 4.4.: Final experimental results for the different anchor point initialization methods.
Training each experiment for 50 epochs and selecting the best epoch based on
SI-SNR on the validation set.

4.3. Results 39

ID
Units per
direction
in LSTMs

Initialization
method of
anchor points

Optimizer Epoch
SDR
on test set

SI-SNR
on test set

2.1 300 Sphere RMSprop 50 6.5 5.1
2.2 300 Sphere ADAM 29 6.4 5.0
2.3 300 Sphere ADAM* 15 5.8 4.1
2.4 600 Sphere ADAM 28 6.6 5.2
2.5 600 Random ADAM 21 6.3 4.8
2.6 600 Random ADAM 31 6.8 5.5

Table 4.5.: Experimental results of evaluation of different optimizer settings and number
of units per direction in LSTMs of the ADANet. * with reduce learning rate
on plateau. Best epoch is selected base on validation loss with early stopping
similar to preliminary results of the first test series.

4.3.2. Impact of Optimizer and Number of LSTM Units on ADANet

Because there is a difference between our first results presented previously and the re-

sults reported in the ADANet paper by Luo et al. [7], we conducted as second series of

experiments analyzing if the number of units per direction in the BLSTMs or different

optimizers could cause this differences. However, the results of this second experiment

series, which we present in detail in this section, validate the previously presented results

of our first experiment series. In the chapter 5 we discuss possible other reasons for the

observed difference.

The ADANet with 6 anchor points by Luo et al. achieves a SI-SNR of 9.6 dB. Our best

result of 6.8 dB SI-SNR is far below. Looking for differences in the implementation we

see that Luo et al. use the Adaptive Moment Estimation (ADAM) optimizer and we use

the RMSprop optimizer. Furthermore, Luo et al. do not directly specify if the number

of 600 units in the BLSTM layers are per direction or in total. That is why we perform

experiments with 300 units per direction in the BLSTMs, which results in a total of 600

units per BLSTM layer. We only report results with early stopping based on the validation

loss for the second experiment series. Due to time constrains we are not able to continue

this second experiment series similar to the first experiment series without early stopping

based on the validation loss and selecting the best epoch based on the SI-SNR instead.

Tabel 4.5 shows the results of the second experiment series. The first 3 experiments are

conducted with 300 units pre direction in all four BLSTM layers. For the first experiment

of this series we continued to use RMSprop as the optimizer to investigate the influence

of the units per direction in the LSTMs independently of the optimizer. For this first

experiment with 300 units per direction in the BLSTM layers the SI-SNR is 1 dB less

compared to the results of the experiments Sphere1 and Sphere2 of table 4.3, in which

the BLSTMs have 600 units per direction. We perform two more experiments (2.2 and

2.3) with 300 units per direction in the BLSTM and the Sphere anchor point initialization

method using ADAM as the optimizer to exclude that the first experiment of this test

40 4. Evaluation

series randomly got a bad result. However, experiments 2.2 and 2.3 do not achieve better

results than experiment 2.1. Experiment 2.3 is conducted with a reduction of the learning

rate with the factor 0.5 if the validation loss does not improve for 5 epochs similar to [7].

But this is not constructive as shown in figure 4.3, which shows the validation loss for

this experiment.

Figure 4.3.: Validation loss of experiment 2.3 with learning rate reduction after epoch 14
from 0.0001 to 0.00005 and after epoch 20 to 0.000025.

Second, we evaluate the influence of the optimizer with experiments 2.4, 2.5, and 2.6.

Compared to the preliminary results of experiments 1.1, 1.2, and 1.4 in table 4.3, which

use the RMSprop optimizer, experiments 2.4, 2.5, and 2.6, which use the ADAM opti-

mizer, have about 10% lower SDR and SI-SNR (comparing 1.1 with 2.6, 1.2 with 2.5, and

1.4 with 2.4). These results suggest that RMSprop is better suited than ADAM for train-

ing the ADANet. This could be because ADAM is a combines the ideas of RMSprop

and Momentum [40, 41] and the Momentum component of ADAM does not seem to be

helpful for training the ADANet.

Summarizing the results of the second series of experiments presented in this section,

we conclude that the number of 600 units in the BLSTM layers described by Luo et al. [7]

are probably per direction and that RMSprop is better suited than ADAM for training the

ADANet.

4.3.3. Hyper-parameter Tuning of ODANet

The impact of hyper-parameter tuning on the performance and run-time of the ODANet

is presented in this section. As suggested in [2] we train the ADANet with unidirectional

LSTMs with the different hyper-parameters and use the trained weights due to time con-

strains directly in the ODANet without curriculum training.

4.3. Results 41

The hyper-parameters we evaluate are the number of units in the LSTM layers, the

embedding dimension, and the number of anchor points. The other parameters remain

fixed and are shown in Table A.1 in appendix. Based on our preliminary results presented

in section 4.3.1 we use Sphere as the anchor point initialization method. Additionally, the

results presented in the following are based on training each set of hyper-parameters for

50 epochs and select the best epoch based on the SI-SNR on the validation set.

ID
No. of Units
in LSTMs

Embedding
Dimension

No. of
Anchor
Points

No. of
weights

in million

Processing
Time

mean in ms

SI-SNR
in dB

3.1 600 20 6 12 7.0 5.3
3.2 600 20 4 12 6.9 5.5
3.3 600 15 6 12 6.9 5.1
3.4 600 15 4 12 6.9 5.1
3.5 500 20 6 9 5.6 4.8
3.6 500 20 4 9 5.5 4.9
3.7 400 20 6 6 4.6 4.4
3.8 400 20 4 6 4.3 4.6

Table 4.6.: Results of hyper-parameter tuning. Processing time per frame measured on
the PC with only CPU2. SI-SNR results are for the ODANet on the test set.

The results of the hyper-parameter tuning are shown in Table 4.6. As expected, if we

decrees the hyper-parameter values, then the number of weights in the ADANet will

also decrease, which is equal to the number of weights in the ODANet. Likewise, the

average processing time per frame decreases with a reduction in number of weights in

the ODANet. However, if we reduce the network size the speech separation performance

measured with the SI-SNR also decreases.

It can be seen that the number of units in the LSTMs has a great direct influence on

the number of weights and the processing time. In comparison, the influence of the

embedding dimension and the number of anchor points on the processing time and the

number of weights is negligible.

We observe that the SI-SNR value for the ODANet with 4 anchor points is always

better than for the ODANet with 6 anchor points, in case of the same number of units in

the LSTMs and the same embedding dimension. For experiment 3.4 and 3.3 this cannot

be seen in the rounded SI-SNR values. But if we look at the next decimal places we see

that the SI-SNR for experiment 3.4 with 4 anchor points is 5.063 dB and the SI-SNR for

experiment 3.3 with 6 anchor points is 5.052 dB.

In terms of the processing time saved, we see that from experiment No. 3.2 to No.

3.8 we can reduce the processing time by 37% from 6.9 ms to 4.3 ms while the SI-SNR is

reduced by 16% from 5.5 dB to 4.6 dB.

2In section 4.3.5 we show that our network is faster with only the CPU compared to running it on the
GPU.

42 4. Evaluation

In the following section we see an alternative way to reduce the processing time while

trying to maintain the speech separation performance.

4.3.4. Run-time Optimization with Compression

To analyze the influence of compression on the performance and run-time we conduct

a fourth experiment series. In these experiments we compress the weights of the best

previously trained ADANet with unidirectional LSTMs in particular the weights from

experiment number 3.2 and use them in the CODANet to evaluate the performance of

the CODANet and its run-time.

ID
Compression
Threshold

No. of
weights

in million

Processing
Time

mean in ms

SI-SNR
in dB

4.1 1.0 13 7.6 5.5
4.2 0.9 10 6.1 5.1
4.3 0.8 7 4.9 4.9
4.4 0.7 5 4.2 4.7
4.5 0.6 3 3.8 4.5
4.6 0.5 2 3.7 3.9

3.2 ODANet 12 6.9 5.5

Table 4.7.: Results of CODANet on the PC with weights compressed from experiment
3.2 the ODANet with 600 LSTM units, embedding dimension 20 and 4 anchor
points.

Table 4.7 shows the experimental results of compressing the weights from experiment

3.2 with different compression thresholds. The first experiment 4.1 uses the compression

threshold 1.0, which is equivalent to no compression. This experiments verifies that that

the CODANet does exactly the same prediction as the ODANet. The SI-SNR for the

ODANet with 600 LSTM Units, the embedding dimension 20, and 4 anchor points and

for the CODANet of this network with a compression threshold of 1.0 are 5.53633 dB. This

SI-SNR value is exactly the same for the ODANet and the CODANet up to the previously

specified decimal places.

As explained in section 3.2.2 the number of weights in the CODANet goes down if

we reduce the compression threshold, which influences the rank of the CLSTM layers in

the CODANet. In Table 4.8 we show how changing the compression threshold τ effects

the rank rl of each LSTM layer l when compressing the weights of experiment 3.2. The

number of weights in the CODANet are given in column 4 of table 4.7 and are calculated

based on the ranks rl given in table 4.8.

Similar to the previous test series, if we reduce the number of weights, then the process-

ing time per frame and the SI-SNR decreases. Reducing the processing time per frame

is desired while we want to maintain the SI-SNR. If we compare the results of the CO-

4.3. Results 43

Compression Threshold r1 r2 r3 r4

1.0 600 600 600 600
0.9 443 444 428 403
0.8 336 328 304 273
0.7 251 234 205 177
0.6 182 157 127 107
0.5 124 95 69 61

Table 4.8.: Rank for each layer of the CODANet with different compression threshold.

DANet from experiment 4.4 with a compression threshold of 0.7 and the ODANet from

experiment 3.2, then we see that we can reduce the processing time by 39% from 6.9 ms
to 4.2 ms while the SI-SNR is reduced by 15% from 5.5 dB to 4.7 dB. This is better than

the result we achieved with the hyper-parameter tuning.

Figure 4.4.: SI-SNR over processing time per frame on the PC for ODANet with 4 anchor
points (blue) and CODANet (green). We aim for a high SI-SNR with a low
processing time. The labels indicate the compression threshold τ for the CO-
DANet and the number of LSTM units N∗ in each layer of the ODANet. The
dashed arrow indicates that the weights from this ODANet experiment are
used in all CODANet experiments.

In Figure 4.4 we show the SI-SNR performance over the processing time per frame

for the hyper-parameter tuning and CODANet experiments. The dashed arrow from the

ODANet with 4 anchor points and 600 units in the LSTMs to the CODANet with the com-

pression threshold 1.0 represents that the weights from this ODANet experiment (3.2) are

used in all CODANet experiments. As expected, the CODANet with compression thresh-

old 1.0 has the same SI-SNR performance as the ODANet on which it is based. However,

the processing time per frame is higher for the CODANet with compression threshold

1.0 because it additionally contains the projection matrices in the CLSTMs compared to

44 4. Evaluation

the ODANet.

For the compression thresholds 1.0 to 0.7 we see a nearly linear decrease of the SI-

SNR with a decreasing mean processing time per frame of 0.24 dB
ms with an decreasing

compression threshold. If we compare this to the decrease of the SI-SNR over the mean

processing time for the ODANet with 4 anchor points from the experiment with 600

units in the LSTM layers to experiment 400 units in the LSTM layers, then we see that

the SI-SNR decreases with 0.35 dB
ms , which is faster than for the compression experiments.

However, if the compression threshold is decreased below 0.7, then the SI-SNR decreases

much faster than the processing time per frame.

In general, if we compare the results of of the hyper-parameter tuning (in blue) to the

results of the compression method (in green) in figure 4.4, then we see that for similar

processing times the SI-SNR for the CODANet is slightly better than the SI-SNR of the

ODANet, except for the ODANet with 4 anchor points and 600 LSTM units in each layer.

Furthermore, for each experiment in the hyper-parameter tuning we have to train the

network for 19 to 25 hours on the PC to get the network weights for a specific set of

hyper-parameters. In comparison, we get the weights for the CODANet much faster

with the compression method. It only takes view seconds to compress the weights of a

previously trained ADANet. In Appendix A.4 on page 64 we provide a similar plot to

figure 4.4, which also includes the ODANet experiments with 6 anchor points.

To summarize, compressing a network is much faster than the hyper-parameter tuning

and with the CODANet we get even slightly better results then with the hyper-parameter

tuning in terms of the SI-SNR speech separation performance over the processing time

per frame.

4.3.5. Hardware Related Run-time and Real-time Capability

We evaluate the processing time per frame of the CODANet on the PC and the NVIDIA

Jetson Nano with and without using the GPU. Furthermore, we test the influence of the

different LSTM implementations in the Keras Version 2.2.4 [42]. The LSTM implemena-

tion 1 performce the matrix multiplications of the input gate, the forget get, the output

gate and the cell of the LSTM individually. The LSTM implemenation 2 combines the

individual kernels of the input gate, the forget get, the output gate and the cell to one sin-

gular kernel similar to equation 3.28 on page 23. This composed kernel is then multiplied

with the input and the output of this multiplication is decomposed again afterwards. The

same is done for the recurrent kernel. This implementation 2 is supposed to work better

with the NVIDIA CUDA R© Deep Neural Network library (cuDNN) for GPUs [43].

If we compare the processing time in Table 4.9 of a specific set of parameter on the PC

to the same setup on NVIDIA Jetson Nano, then we see that the processing of a single

frame takes 3 to 4 times longer on the NVIDIA Jetson Nano compared to the PC. This

results are a little better than the results of the benchmark analysis by Bianco et al. [28], in

which they compared the run-time between the NVIDIA Titan X and the NVIDIA Jetson

4.3. Results 45

Compression Threshold

0.5 0.6 0.7 0.8 0.9 1.0

Hardware
Processing
Unit

LSTM
Impl.

PC CPU 1 3.7 3.8 4.2 4.9 6.1 7.6

2 3.8 4.5 5.1 5.9 6.9 8.1

GPU 1 8.6 8.6 8.5 8.6 8.5 8.7

2 7.7 7.7 7.7 7.6 7.8 7.7

Jetson CPU 1 10.5 12.9 15.6 19.6 24.4 31.5

2 10.2 12.8 15.6 19.8 25.1 32.4

GPU 1 32.9 34.5 37.3 35.8 36.3 36.4

2 28.0 27.4 27.5 27.7 28.3 28.9

Table 4.9.: Mean processing time per frame in ms of CODANet on NVIDIA Jetson Nano
and PC with and without GPU and for different Keras LSTM implementations.

TX1 for different DNN architectures for image recognition. Bianco et al. observe that on

the NVIDIA Jetson TX1 it takes 5 to 35 times longer to process a single image than on the

NVIDIA Titan X.

Looking at the influence of using the GPU or only using the CPU we see that when the

GPU is used the processing times per frame is almost independent of the compression

threshold and depends more on the type of Keras LSTM implementation that is used.

As expected, with the LSTM implementation 2 the network is faster then with the LSTM

implementaion 1 when using the GPU. On the PC the Keras LSTM implementation 2

is about 10% faster than the implementation 1. On the NVIDIA Jetson Nano the Keras

LSTM implementation 2 is even about 20% faster than the implementation 1. Neverthe-

less, for all setups the processing time per frame of the CODANet is lower when using

only the CPU and not the GPU. Furthermore, when using only the CPU we see a direct

impact of the compression threshold of the CODANet on the mean processing time per

frame. On the NVIDIA Jetson Nano the processing time per frame for the compression

threshold 0.5 is almost 70% less then the processing time per frame for the compression

threshold 1.0 when using only the CPU. On the PC the processing time per frame for the

compression threshold 0.5 is about 50% less then the processing time per frame for the

compression threshold 1.0 when using only the CPU.

Looking at the histogram of the processing time per frame of the CODANet on the

PC (figure 4.5), we see that for the compression thresholds 0.9 and below, the majority

of the frames have a processing time smaller than 8 ms. However, for all experiments

there is a small percentage of frames that has a processing time larger than 8 ms (see ta-

ble 4.10). This makes non of the implementations truly real-time capable in the current

setup. However, the desktop PC on which we perform our experiments is connected

46 4. Evaluation

2 3 4 5 6 7 8 9 10
Processing Time per Frame in ms

0

500

1000

1500

2000

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for CODANet
Comp. Threshold

1
0.9
0.8
0.7
0.6
0.5

Figure 4.5.: Histogram of processing time per frame for CODANet on the PC with only
CPU and Keras LSTM Implementation 1.

Compression
Threshold

Percentage of frames
over 8 ms

1.0 6.88%
0.9 0.41%
0.8 0.12%
0.7 0.08%
0.6 0.03%
0.5 0.03%

Table 4.10.: Percentage of frames of the CODANet for which the processing time is larger
than the hop size of 8 ms.

to the internet and the university network. It runs a standard Ubuntu 18.04 and is ac-

cessed through Secure Shell (ssh). This leaves room for optimization and we think that

for the compression threshold 0.7 acceptable real-time processing could be achieved on a

desktop PC.

In Figure 4.6, which shows the histogram of the processing time per frame for the

CODANet on the NVIDIA Jetson Nano, we see that for all compression thresholds the

CODANet is not real-time capable on the NVIDIA Jetson Nano.

All the conclusions we make in this section about the processing time per frame as a

function of the hardware and the Keras LSTM implementation for the CODANet, we see

in the same way for the hyper-parameter tuning of the ODANet. Appendix A.5 contains

all corresponding tables and histograms for the ODANet.

4.3. Results 47

10 15 20 25 30 35
Processing Time per Frame in ms

0

50

100

150

200

250

300

350
Nu

m
be

r o
f F

ra
m

es

Histogram of Processing Time per Frame for CODANet
Comp. Threshold

1
0.9
0.8
0.7
0.6
0.5

Figure 4.6.: Histogram of processing time per frame for CODANet on the NVIDIA Jetson
Nano with only CPU and Keras LSTM Implementation 1.

4.3.6. Additional Findings

In this section, we present additional results that are not part of the core research of this

work but may be of interest to other researchers.

Meta-Frame Size

We conducted one experiment with meta-frame size 100 and all other parameters like

shown in table 4.2 on page 36. However, for this experiment the validation loss does

not decrease further after epoch 8 but starts increasing as shown in figure 4.7. In general

this could be a sign of over-fitting. Nevertheless, over-fitting is unusual so early in the

training. One possible explanation is that the network is not able to learn good anchors

and embeddings from such short spectrogram segments, which contain information of

only 0.8 seconds of the audio signal. That is why we use the meta-frame size of 400 for

all experiments presented in the previous sections.

Curriculum Training of CODANet

Figure 4.8 shows the SI-SNR of the CODANet over the number of epochs when it is

trained with the initial weights (epoch 0) taken from the ADANet of experiment number

3.2 at a compression threshold of 0.7. The black horizontal line shows the SI-SNR with-

out curriculum training, which is exceeded after 15 epochs of curriculum training. We

assume that the SI-SNR goes down from epoch 0 to epoch 1 because the optimizer in our

48 4. Evaluation

case RMSprop is still learning how the weights can be updated in an optimized way. In

general, this shows that curriculum training can further improve the performance of the

CODANet.

Figure 4.7.: Validation loss of ADANet experiment with meta-frame size 100

Figure 4.8.: SI-SNR on test set for curriculum training of CODANet with compression
threshold 0.7. The black horizontal line indicates the SI-SNR without curricu-
lum training.

4.3. Results 49

ODANet with 3 LSTM Layers

Training the ADANet with 3 LSTM layers instead of 4 LSTM layers and using the re-

sulting weights in the ODANet leads to good results as shown in figure 4.9. The SI-SNR

for the ODANet with 3 LSTM layers is 5.2 dB at an average processing time per frame

of 5.9 ms on PC with only CPU and LSTM Implementation 1. However, due to time

constrains we did not further investigate on this option. In future work, it would be in-

teresting to analyze the effect of compressing the ODANet with 3 LSTM layers and the

effect of reducing the number of LSTM units on the performance and processing time per

frame.

Figure 4.9.: SI-SNR over processing time per frame on the PC for CODANet (green) and
ODANet with 4 anchor points and 4 LSTM layers (blue) and 3 LSTM layers
(orange). We aim for a high SI-SNR with a low processing time. The labels
indicate the compression threshold τ for the CODANet and the number of
LSTM units N∗ in each layer of the ODANet. The dashed arrow indicates
that the weights from this ODANet experiment are used in all CODANet
experiments.

50 4. Evaluation

51

5. Discussion

In this chapter, we summarize our results and compare them to the related work.

One key finding of our experiments is that the compression method by Prabhavalka et

al. [4] is faster and better in finding a good trade-off between low processing time and

speech separation performance than hyper-parameter tuning. The compression method

is faster in finding a good trade-off, because once we have a trained ODANet the weights

for the CLSTMs can be calculated in less than a minute using the SVD as described in

section 3.1.4. That the resulting CODANet has a better speech separation performance

than the ODANet for similar processing times can easily be seen in figure 4.4 on page 43.

While real-time speech separation seems possible on the desktop PC, it does not seem

possible on the NVIDIA Jetson Nano, because the average processing time of the smallest

tested CODANet with a compression threshold of 0.5 is above the hop size of 8 ms with

an SI-SNR of 3.9 dB. We could further decrease the compression threshold, but figure

4.4 suggest that this would cause a strong decrease in the speech separation performance

with only a minor decrease in the processing time.

When comparing the performance loss of 15% in the SI-SNR due to the reduction of

the network size in our work to the performance loss of 1% in the SI-SNR in [7] and the

performance loss of 5% in the SDR in [27], we find that the performance loss in our work

is relatively large in relation to the compression achieved. In [1] and [27] the networks

are even more reduced in proportion than in our work. Nevertheless, as shown in the

additional findings (section 4.3.6) with curriculum training of the CODANet the gap in

the performance between the ODANet and the CODANet could possibly be narrowed.

If we compare our results to related speech separation systems, we see that our ADANet,

ODANet and the CODANet with reduced processing time are far below the state of the

art speech separation performance as shown in table 5.1. Nevertheless, we believe that

the observations we make on the relative improvement in processing time of CODANets

in relation to the performance degradation can be transferred to other speech signal pro-

cessing algorithms using RNNs in particular LSTMs.

The differences in the SI-SNR performance between our ADANet-BLSTM implemen-

tation and the ADANet-BLSTM implementation by Luo et al. [7] could be caused by the

difference in the implementation, which we detailed in section 3.1.1 and 3.1.2. In contrast

to our implementation, Luo et al. implemented a salient weight threshold, used a slightly

different loss function, performed curriculum training with a meta-frame size of 100 fol-

lowed by a meta-frame size of 400, and used dropout in the LSTM layers during training.

52 5. Discussion

ID Method
No. of

weights
in million

Causal
SI-SNR

(dB)
SDR
(dB)

- DPCL++ [12] 8 × 10.3 -
- ADANet-BLSTM [7] 33 × 9.6 -
- ADANet-BLSTM† [7] 33 × 10.8 10.8
- ADANet-LSTM [2] 12 × 9.1 9.5
- Conv-TasNet-gLN [17] 5 × 15.3 15.6
- DPTNet [19] 3 × 20.2 20.6
- ODANet [2] 12 X 9.0 9.4
- uPIT-LSTM [15] 77 X - 7.0
- LSTM-TasNet [16] 32 X 10.8 11.2
- Conv-TasNet-cLN [17] 5 X 10.6 11.0

1.6 ADANet-BLSTM 33 × 6.8 7.9
1.6 ADANet-BLSTM* 33 × 8.4 9.1
3.2 ADANet-LSTM* 12 × 6.6 7.7
3.2 ODANet* 12 X 5.5 6.8
4.4 CODANet* 5 X 4.7 6.1

Table 5.1.: Comparison with other methods on WSJ0-2mix dataset. For the methods with
references we report the results from the respective publications. The † indi-
cates the results with curriculum training and dropout. The * indicates evalu-
ation with meta-frame size 800.

Furthermore, we only trained our models for 50 epochs while Lue et al. trained their

models for up to 100 epochs. Plots of the SI-SNR on the validation set over the epochs

of one training suggest that we possible could continue training our networks without

over-fitting (see figure 4.2 on page 38).

For better comparison between the ADANet, the ODANet and CODANet the we also

evaluate our non-causal experiments with a meta-frame size of 800 instead of 400 as

indicated by the * in table 5.1. Because we evaluate the ODANet and CODANet with

a meta-frame size of 800 by default to ensure that an entire utterance is processed be-

fore the states in the LSTMs respectively CLSTMs are reset. Because of this change

in the evaluation setup, the SI-SNR of experiment number 1.6 is about 25% better for

the ADANet-BLSTM* evaluated with a meta-frame size of 800 than the SI-SNR for the

ADANet-BLSTM evaluated with a meta-frame size of 400. This is because with meta-

frame size 400 speaker permutation in the output can occur between the meta-frames of

one utterance.

If we compare the CODANet* with a compression threshold of 0.7, which has an av-

erage processing time of 4.2 ms on the PC, to our ADANet and ODANet implementa-

tions and the related work, we can make the following observations. The SI-SNR of our

CODANet* is 15% less than our uncompressed version the ODANet* while the average

processing time per frame is decrease from 6.9 ms to 4.2 ms by 39%. If we compare the

relative decrease of the SI-SNR in our implementation from the ADANet-LSTM* to the

53

ODANet* it is slightly larger than the relative decrease in [2]. However, Han et al. [2]

trained the ODANet after loading the weights from the ADANet, which we do not. This

could be an explanation for this difference especially since our additional experiments on

the CODANet show that curriculum training can further improve the performance while

maintaining the processing time.

Looking at the other causal methods we see that in the other LSTM-based approaches

uPIT-LSTM [15] and LSTM-TasNet [16] are much larger than the ODANet [2] in terms

of the number of weights while having almost similar performances. This shows that

the ODANet is a good choice in terms of the baseline model size. In contrast, Conv-

TasNet-cLN [17] has only as many weights as our CODANet and better performance

than the time-frequency domain approaches. However, though the algorithmic latency

for TASNet is as low as 5 ms an actual processing time per frame has not been reported

to our knowledge.

Finally, if we look a the non-causal time domain approaches like Conv-TasNet-gLN

[17] and DPTNet [19] they outperform the time-frequency domain approaches and use

non-recurrent DNN. Low-rank matrix factorization like in [33] could also be applied to

compress these approaches, but the compression method investigated in this work based

on [4], which jointly optimizes the recurrent and non-recurrent kernel of the following

layer is specific to RNNs like LSTMs.

In the next chapter we conclude our work.

54 5. Discussion

55

6. Conclusion

In this work, we optimized the Online Deep Attractor Network (ODANet) [2] for real-

time speech separation on an embedded system like the NVIDIA Jetson Nano by ap-

plying hyper-parameter tuning and the compression method by Prabhavalkar et al. [4].

We introduced the Compressed Online Deep Attractor Network (CODANet), which is a

compressed version of the ODANet, in which the long short-term memory (LSTM) lay-

ers are replaced with compressed long short-term memory (CLSTM) layers. For these

CLSTMs we are the first to our knowledge to provide a detailed explanation in combi-

nation with an open-source implementation1. In addition, we presented Sphere Pair:

an optimized way to initialize the anchors of the Anchored Deep Attractor Network

(ADANet) [7], which is the non-causal version of the ODANet and required for curricu-

lum training of the ODANet.

With the CODANet we improved the average processing time per frame on the NVIDIA

Jetson Nano, the selected embedded system, from 26.8 ms per frame for the ODANet to

15.6 ms per frame for the corresponding CODANet with a compression threshold of 0.7,

while the speech separation performance decreased by only 15% from 5.5 dB to 4.7 dB in

the SI-SNR on the WSJ0-2mix test set. Yet we have not achieved our goal of bringing the

processing time below the hop size of the STFT of 8 ms, which is a necessary requirement

for real-time application on the embedded system. On the PC in contrast the average

processing time per frame is smaller than the hop size, 6.9 ms for the ODANet and 4.2 ms
for the CODANet and thus allowing for real-time speech separation on such systems.

In general, our experiments showed that the CODANet has a better speech separa-

tion performance compared to a hyper-parameter tuned ODANet for similar processing

times. On this basis, we conclude that the applied compression method with CLSTMs is

better suited for finding a good trade-off between low latency and speech separation per-

formance than hyper-parameter tuning. Future research could validate whether CLSTMs

yield similar results when they are applied to other signal processing algorithms using

LSTMs.

1We provide our open-source CLSTM implementation at https://github.com/sp-uhh/
compressed-lstm

https://github.com/sp-uhh/compressed-lstm
https://github.com/sp-uhh/compressed-lstm

56 6. Conclusion

57

Bibliography

[1] Y. Luo, C. Han, and N. Mesgarani, “Ultra-Lightweight Speech Separation via Group

Communication,” arXiv preprint arXiv:2011.08397, 2020.

[2] C. Han, Y. Luo, and N. Mesgarani, “Online Deep Attractor Network for Real-time

Single-channel Speech Separation,” in ICASSP 2019 - 2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 361–365,

iSSN: 1520-6149.

[3] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invariant training of deep

models for speaker-independent multi-talker speech separation,” in 2017 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2017,

pp. 241–245, iSSN: 2379-190X.

[4] R. Prabhavalkar, O. Alsharif, A. Bruguier, and L. McGraw, “On the compression

of recurrent neural networks with an application to LVCSR acoustic modeling for

embedded speech recognition,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 5970–5974.

[5] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clustering: Discrim-

inative embeddings for segmentation and separation,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp. 31–35,

iSSN: 2379-190X.

[6] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for single-microphone

speaker separation,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar. 2017, pp. 246–250, iSSN: 2379-190X.

[7] Y. Luo, Z. Chen, and N. Mesgarani, “Speaker-Independent Speech Separation With

Deep Attractor Network,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 4, pp. 787–796, Apr. 2018, conference Name: IEEE/ACM

Transactions on Audio, Speech, and Language Processing.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[9] S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Fundamentals,
Implementations and Applications. John Wiley & Sons, Aug. 2013.

58 Bibliography

[10] M. A. Stone and B. C. Moore, “Tolerable hearing aid delays. I. Estimation of limits

imposed by the auditory path alone using simulated hearing losses,” Ear and Hear-
ing, vol. 20, no. 3, pp. 182–192, 1999, publisher: LWW.

[11] NVIDIA Corporation, “Jetson Nano Data Sheet,” Feb.

2020. [Online]. Available: https://developer.nvidia.com/embedded/dlc/

jetson-nano-system-module-datasheet

[12] Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey, “Single-Channel

Multi-Speaker Separation using Deep Clustering,” arXiv:1607.02173 [cs, stat], Jul.

2016, arXiv: 1607.02173. [Online]. Available: http://arxiv.org/abs/1607.02173

[13] Z.-Q. Wang, J. L. Roux, and J. R. Hershey, “Alternative Objective Functions for Deep

Clustering,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Apr. 2018, pp. 686–690, iSSN: 2379-190X.

[14] S. Wang, G. Naithani, and T. Virtanen, “Low-latency deep clustering for speech sep-

aration,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 76–80.

[15] M. Kolbaek, D. Yu, Z.-H. Tan, J. Jensen, M. Kolbaek, D. Yu, Z.-H. Tan,

and J. Jensen, “Multitalker Speech Separation With Utterance-Level Permutation

Invariant Training of Deep Recurrent Neural Networks,” IEEE/ACM Trans. Audio,
Speech and Lang. Proc., vol. 25, no. 10, pp. 1901–1913, Oct. 2017. [Online]. Available:

https://doi.org/10.1109/TASLP.2017.2726762

[16] Y. Luo and N. Mesgarani, “TaSNet: Time-Domain Audio Separation Network for

Real-Time, Single-Channel Speech Separation,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018, pp. 696–700, iSSN:

2379-190X.

[17] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time–Frequency Magni-

tude Masking for Speech Separation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[18] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-Path RNN: Efficient Long Sequence

Modeling for Time-Domain Single-Channel Speech Separation,” in ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Barcelona, Spain: IEEE, May 2020, pp. 46–50. [Online]. Available:

https://ieeexplore.ieee.org/document/9054266/

[19] J. Chen, Q. Mao, and D. Liu, “Dual-Path Transformer Network: Direct Context-

Aware Modeling for End-to-End Monaural Speech Separation,” arXiv preprint
arXiv:2007.13975, 2020.

https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
http://arxiv.org/abs/1607.02173
https://doi.org/10.1109/TASLP.2017.2726762
https://ieeexplore.ieee.org/document/9054266/

Bibliography 59

[20] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech

Separation via TasNet,” arXiv:1910.11615 [cs, eess], Oct. 2019, arXiv: 1910.11615.

[Online]. Available: http://arxiv.org/abs/1910.11615

[21] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale neural network for

end-to-end audio source separation,” arXiv preprint arXiv:1806.03185, 2018.

[22] Z. Shi, H. Lin, L. Liu, R. Liu, J. Han, and A. Shi, “FurcaNeXt: End-to-end monaural

speech separation with dynamic gated dilated temporal convolutional networks,”

arXiv preprint arXiv:1902.04891, 2019.

[23] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, “Attention is All You

Need in Speech Separation,” arXiv preprint arXiv:2010.13154, 2020.

[24] N. Zeghidour and D. Grangier, “Wavesplit: End-to-end speech separation by

speaker clustering,” arXiv preprint arXiv:2002.08933, 2020.

[25] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A comprehensive

survey on model compression and acceleration,” Artificial Intelligence Review,

vol. 53, no. 7, pp. 5113–5155, Oct. 2020. [Online]. Available: https://doi.org/10.

1007/s10462-020-09816-7

[26] F. Drakopoulos, D. Baby, and S. Verhulst, “Real-Time Audio Processing on a Rasp-

berry Pi using Deep Neural Networks,” in 23rd International Congress on Acoustics
(ICA 2019). Deutsche Gesellschaft für Akustik, 2019, pp. 2827–2834.

[27] I. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell, Y. Gan, M. Mat-

tina, and P. N. Whatmough, “TinyLSTMs: Efficient Neural Speech Enhancement

for Hearing Aids,” arXiv preprint arXiv:2005.11138, 2020.

[28] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of repre-

sentative deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–64 277,

2018, publisher: IEEE.

[29] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation

of speech quality (PESQ)-a new method for speech quality assessment of telephone

networks and codecs,” in 2001 IEEE International Conference on Acoustics, Speech, and
Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[30] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matassoni, “The sec-

ond ‘CHiME’speech separation and recognition challenge: Datasets, tasks and base-

lines,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

IEEE, 2013, pp. 126–130.

[31] NVIDIA Corporation, “Jetson TX1 Module Data Sheet,” Nov. 2016. [Online]. Avail-

able: http://developer.nvidia.com/embedded/dlc/jetson-tx1-module-data-sheet

http://arxiv.org/abs/1910.11615
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1007/s10462-020-09816-7
http://developer.nvidia.com/embedded/dlc/jetson-tx1-module-data-sheet

60 Bibliography

[32] P. K. Kuhl, “Human adults and human infants show a “perceptual magnet effect”

for the prototypes of speech categories, monkeys do not,” Perception & psychophysics,

vol. 50, no. 2, pp. 93–107, 1991, publisher: Springer.

[33] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network acoustic models

with singular value decomposition.” in Interspeech, 2013, pp. 2365–2369.

[34] Keras-team, “SimpleRNNCell,” Sep. 2018. [Online]. Available: https://github.

com/keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L779

[35] C. Eckart and G. Young, “The approximation of one matrix by another of lower

rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936, publisher: Springer.

[36] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,” The quarterly
journal of mathematics, vol. 11, no. 1, pp. 50–59, 1960, publisher: Oxford University

Press.

[37] C. Olah, “Understanding LSTM Networks – colah’s blog,” Aug. 2015. [Online].

Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[38] A. Collette, Python and HDF5: unlocking scientific data. " O’Reilly Media, Inc.", 2013.

[39] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind au-

dio source separation,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[41] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude,” COURSERA: Neural networks for machine learning,

vol. 4, no. 2, pp. 26–31, 2012.

[42] Keras-team, “LSTMCell,” Sep. 2018. [Online]. Available: https://github.com/

keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L1756

[43] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,” arXiv:1410.0759
[cs], Dec. 2014, arXiv: 1410.0759. [Online]. Available: http://arxiv.org/abs/1410.

0759

https://github.com/keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L779
https://github.com/keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L779
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L1756
https://github.com/keras-team/keras/blob/2.2.4/keras/layers/recurrent.py#L1756
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759

61

A. Appendix

62 A. Appendix

A.1. Compressed LSTM Equations

LSTM Equations

ft = σg(hl−1
t Wl

f x + hl
t−1Wl

f h + b f) (A.1)

it = σg(hl−1
t Wl

ix + hl
t−1Wl

ih + bi) (A.2)

ot = σg(hl−1
t Wl

ox + hl
t−1Wl

oh + bo) (A.3)

C̃t = σc(hl−1
t Wl

cx + hl
t−1Wl

ch + bc) (A.4)

Ct = ft � Ct−1 + it � C̃t (A.5)

hl
t = ot � σh(Ct) (A.6)

Compressed LSTM Equations

ft = σg(h̃l−1
t Zl

f x + h̃l
t−1Zl

f h + b f) (A.7)

it = σg(h̃l−1
t Zl

ix + h̃l
t−1Zl

ih + bi) (A.8)

ot = σg(h̃l−1
t Zl

ox + h̃l
t−1Zl

oh + bo) (A.9)

C̃t = σc(h̃l−1
t Zl

cx + h̃l
t−1Zl

ch + bc) (A.10)

Ct = ft � Ct−1 + it � C̃t (A.11)

hl
t = ot � σh(Ct) (A.12)

h̃l
t = hl

tP
l (A.13)

(a) LSTM Cell [37] (b) Compressed LSTM Cell

Figure A.1.: The LSTM Cell (a) and its compressed version (b)

A.2. ADANet Architecture Figure Adapted for the First Frame of the ODANet 63

A.2. ADANet Architecture Figure Adapted for the First Frame of

the ODANet

Online DANet
(first frame)

4 LSTM Layers

Fully-connected
Layer

Embedding

Attractors

Estimated Sources

Attractor Calculation
and selection of

best attractor combination

Masks

Mask Calculation

Estimated Source Assignments

Source Assignment Esitmation
with Anchors

Mag. Frame-Spectrogram

Estimated Sources

Convert to Absolut Values
in dB and Capping

Input-Frame
(F Representation)

Figure A.2.: ODANet architecture (first frame t = 1). The dashed box with rounded
edges represents a super-process which combines the entire attractor calcula-
tion for the first-frame and the attractor calculation for the for the following
frames which is shown in figure 3.5 on page 20. Graphic adapted from [7, p.
789].

64 A. Appendix

A.3. Fixed Parameters for Hyper-parameter Tuning

Parameter Value

Meta-frame size 400

LSTM directonality unidirectional

Batch size 32

Loss function equation 3.6

Optimizer RMSprop

Learning rate 0.0001

Early stopping (on val. loss) not used

Reduce learining rate on plateau not used

Table A.1.: Fixed parameters for hyper-parameter tuning experiments.

A.4. SI-SNR over Processing Time per Frame Including ODANet

with 6 Anchors

Figure A.3.: SI-SNR over processing time per frame on the PC for ODANet with 4 anchor
points (blue) and ODANet with 6 anchor points (orange) and CODANet
(green). We aim for a high SI-SNR with a low processing time. The labels
indicate the compression threshold τ for the CODANet and the number of
LSTM units N∗ in each layer of the ODANet. The dashed arrow indicates
that the weights from this ODANet experiment are used in all CODANet
experiments.

A.4. SI-SNR over Processing Time per Frame Including ODANet with 6 Anchors 65

66 A. Appendix

A.5. Processing Time per Frame of ODANet

On the PC using only CPU

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 4.6 0.15 79

500 20 4 5.5 0.15 79

6 5.6 0.16 78

600 15 4 6.9 0.18 79

6 6.9 0.20 79

20 4 6.9 0.23 90

6 7.0 0.21 80

Table A.2.: Processing time per frame of ODANet on PC using only the CPU with the
Keras LSTM implementation 1

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 5.5 0.32 84

500 20 4 6.1 0.40 87

6 6.4 0.41 81

600 15 4 6.9 0.60 88

6 7.2 0.66 88

20 4 7.1 0.60 89

6 7.3 0.57 82

Table A.3.: Processing time per frame of ODANet on PC using only the CPU with the
Keras LSTM implementation 2

A.5. Processing Time per Frame of ODANet 67

On the PC using GPU

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 8.7 0.86 104

500 20 4 8.6 0.80 92

6 8.6 0.83 97

600 15 4 8.5 0.80 89

6 8.7 0.82 90

20 4 8.7 0.82 93

6 8.6 0.84 97

Table A.4.: Processing time per frame of ODANet on PC using the GPU with the Keras
LSTM implementation 1

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 7.8 0.73 90

500 20 4 7.8 0.72 91

6 7.8 0.77 106

600 15 4 7.7 0.73 96

6 7.8 0.73 92

20 4 7.8 0.71 95

6 7.9 0.75 94

Table A.5.: Processing time per frame of ODANet on PC using the GPU with the Keras
LSTM implementation 2

68 A. Appendix

On the NVIDIA Jetson Nano using only CPU

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 17.8 0.25 38

500 20 4 21.2 0.26 41

6 21.3 0.28 32

600 15 4 26.6 0.41 49

6 27.1 0.39 44

20 4 26.8 0.42 43

6 27.7 0.42 41

Table A.6.: Processing time per frame of ODANet on NVIDIA Jetson Nano using only
the CPU with the Keras LSTM implementation 1

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 17.5 0.25 35

500 20 4 21.1 0.66 44

6 21.7 0.69 38

600 15 4 27.7 0.23 47

6 28.4 0.18 38

20 4 28.5 0.29 44

6 29.1 0.23 47

Table A.7.: Processing time per frame of ODANet on NVIDIA Jetson Nano using only
the CPU with the Keras LSTM implementation 2

A.5. Processing Time per Frame of ODANet 69

On the NVIDIA Jetson Nano using GPU

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 34.7 2.45 53

500 20 4 37.5 1.54 55

6 38.0 1.83 55

600 15 4 38.6 1.65 57

6 38.7 2.16 57

20 4 38.7 2.10 71

6 38.2 2.42 63

Table A.8.: Processing time per frame of ODANet on NVIDIA Jetson Nano using the
GPU with the Keras LSTM implementation 1

No. of Units

in LSTMs

Embedding

Dimension

No. of

Anchor

Points

mean

in ms
var

max

in ms

400 20 6 28.9 3.09 52

500 20 4 28.2 3.29 47

6 29.7 3.33 50

600 15 4 28.1 2.37 56

6 29.7 2.58 53

20 4 28.3 2.63 63

6 30.1 2.61 53

Table A.9.: Processing time per frame of ODANet on NVIDIA Jetson Nano using the
GPU with the Keras LSTM implementation 2

70 A. Appendix

2 3 4 5 6 7 8 9 10
Processing Time per Frame in ms

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for ODANet
No. of Units in LSTMs

600
500
400

Figure A.4.: Histogram of processing time per frame for ODANet with 4 anchor points
and embedding dimension 20 on the PC with only CPU and Keras LSTM
Implementation 1.

2 3 4 5 6 7 8 9 10
Processing Time per Frame in ms

0

100

200

300

400

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for ODANet
No. of Units in LSTMs

600
500

Figure A.5.: Histogram of processing time per frame for ODANet with 4 anchor points
and embedding dimension 20 on the PC with GPU and Keras LSTM Imple-
mentation 2.

A.5. Processing Time per Frame of ODANet 71

10 15 20 25 30 35
Processing Time per Frame in ms

0

50

100

150

200

250

300
Nu

m
be

r o
f F

ra
m

es

Histogram of Processing Time per Frame for ODANet
No. of Units in LSTMs

600
500

Figure A.6.: Histogram of processing time per frame for ODANet with 4 anchor points
and embedding dimension 20 on the NVIDIA Jetson Nano with only CPU
and Keras LSTM Implementation 1.

10 15 20 25 30 35
Processing Time per Frame in ms

0

20

40

60

80

100

120

140

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for ODANet
No. of Units in LSTMs

600
500

Figure A.7.: Histogram of processing time per frame for ODANet with 4 anchor points
and embedding dimension 20 on the NVIDIA Jetson Nano with GPU and
Keras LSTM Implementation 2.

72 A. Appendix

A.6. Processing Time per Frame of CODANet

Compression Threshold

0.5 0.6 0.7 0.8 0.9 1.0

Hardware
Processing

Unit

LSTM

Impl.

Jetson CPU 1 10.5 12.9 15.6 19.6 24.4 31.5

2 10.2 12.8 15.6 19.8 25.1 32.4

GPU 1 32.9 34.5 37.3 35.8 36.3 36.4

2 28.0 27.4 27.5 27.7 28.3 28.9

PC CPU 1 3.7 3.8 4.2 4.9 6.1 7.6

2 3.8 4.5 5.1 5.9 6.9 8.1

GPU 1 8.6 8.6 8.5 8.6 8.5 8.7

2 7.7 7.7 7.7 7.6 7.8 7.7

Table A.10.: Mean processing time per frame in ms of CODANet

Compression Threshold

0.5 0.6 0.7 0.8 0.9 1.0

Hardware
Processing

Unit

LSTM

Impl.

Jetson CPU 1 0.2 0.1 0.2 0.3 0.5 0.6

2 0.2 0.4 0.2 0.3 0.4 0.5

GPU 1 3.3 3.7 2.8 3.7 2.9 2.3

2 2.1 2.3 1.9 2.5 2.1 2.8

PC CPU 1 0.2 0.1 0.2 0.2 0.2 0.3

2 0.3 0.3 0.3 0.4 0.5 0.7

GPU 1 0.8 0.8 0.8 0.8 0.8 0.8

2 0.7 0.7 0.7 0.7 0.7 0.7

Table A.11.: Variance of processing time per frame of CODANet

A.6. Processing Time per Frame of CODANet 73

Compression Threshold

0.5 0.6 0.7 0.8 0.9 1.0

Hardware
Processing

Unit

LSTM

Impl.

Jetson CPU 1 25 26 29 33 42 56

2 28 30 34 36 42 55

GPU 1 61 72 55 55 55 77

2 54 56 46 46 59 54

PC CPU 1 78 79 78 81 79 101

2 90 90 82 88 88 90

GPU 1 94 92 92 96 88 91

2 92 87 94 105 93 94

Table A.12.: Maximum processing time per frame in ms of CODANet

2 3 4 5 6 7 8 9 10
Processing Time per Frame in ms

0

100

200

300

400

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for CODANet
Comp. Threshold

1
0.9
0.8
0.7
0.6
0.5

Figure A.8.: Histogram of processing time per frame for CODANet on the PC with GPU
and Keras LSTM Implementation 2.

74 A. Appendix

10 15 20 25 30 35
Processing Time per Frame in ms

0

20

40

60

80

100

120

Nu
m

be
r o

f F
ra

m
es

Histogram of Processing Time per Frame for CODANet
Comp. Threshold

1
0.9
0.8
0.7
0.6
0.5

Figure A.9.: Histogram of processing time per frame for CODANet on the NVIDIA Jetson
Nano with GPU and Keras LSTM Implementation 2.

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudi-

engang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfs-

mittel — insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen —

benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnom-

men wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die

Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die ein-

gereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 27.11.2020 Marc Siemering

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 27.11.2020 Marc Siemering

	Introduction
	Related Work
	Speech Separation Algorithms
	Compression Methods for Neural Networks
	Signal Processing with Neural Networks on Embedded Systems

	Methods
	Utilized Methods
	Deep Attractor Network (DANet)
	Anchored Deep Attractor Network (ADANet)
	Online Deep Attractor Network (ODANet)
	Compressed Long Short-term Memory (CLSTM)

	Proposed Methods
	Sphere Anchor Point Initialization
	Compressed Online Deep Attractor Network (CODANet)

	Evaluation
	Experimental Setup
	Evaluation Methods
	Scale-invariant Source to Noise Ratio (SI-SNR)
	Source-to-Distortion Ratio (SDR)
	Measurement of Processing Time per Frame

	Results
	Anchor Point Initialization Methods
	Impact of Optimizer and Number of LSTM Units on ADANet
	Hyper-parameter Tuning of ODANet
	Run-time Optimization with Compression
	Hardware Related Run-time and Real-time Capability
	Additional Findings

	Discussion
	Conclusion
	Bibliography
	Appendix
	Compressed LSTM Equations
	ADANet Architecture Figure Adapted for the First Frame of the ODANet
	Fixed Parameters for Hyper-parameter Tuning
	SI-SNR over Processing Time per Frame Including ODANet with 6 Anchors
	Processing Time per Frame of ODANet
	Processing Time per Frame of CODANet

