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1 Summary 

 

Over the last decades, Fucus vesiculosus, an ecologically important macroalga in the German 

Baltic Sea, has shown a massive retreat from the deeper zones of its former distribution 

presumably due to low light co-acting with other potential stressors such as high temperature, 

fouling, and grazing (Wahl et al 2011). In shallow water F. vesiculosus may be exposed to high 

water temperatures during summer seasons. Intensity and frequency of heat waves are expected 

to increase due to climate change which could potentially affect all fucoid life stages. Early life 

stage processes (fertilization, germination) are often considered particularly sensitive to stress. If 

the mortality caused by a first heat wave in a genetically diverse population selects for stress 

resistance, we would expect the survivors to be less sensitive to a second heat wave or possibly 

even to other stressors like feeding pressure. 

In the present study, the mortality of early post-settlement stages of F. vesiculosus under thermal 

stress and the sensitivity of survived recruits against a proximate stressor (feeding pressure, 

second heat wave) were analysed by laboratory experiments. The mortality of early fucoid life 

stages at 25°C, compared to their mortality at 15°C was significantly higher. Regrettably, the 

ensuing assessment of feeding impact by Idotea baltica and Hydrobia ulvae on the surviving 

germlings could not be analysed since the two consumer species unexpectedly avoided feeding 

on the young stages of F. vesiculosus.  

During the second thermal stress experiment fucoid offspring which was genetically preselected 

by high temperature (first heat wave: 25°C) differed not significantly in sensitivity from fucoid 

offspring without prior stress. 

 

2 Backround 

 

Global climate change will affect marine ecosystems in several ways. The semi-enclosed Baltic 

Sea is characterized by its glacial development including species adapted to cold water conditions. 

Therefore strong ecological impacts are expected due to future global warming. The RADOST 

project (Regional Adaption Strategies for the German Baltic Sea Coast) aims to develop 

adaptation strategies for the Baltic coastline of Mecklenburg-Western Pomerania and Schleswig-

Holstein. The Agency for Agriculture, Environment and Rural Areas of Schleswig-Holstein (LLUR) 

is one among 17 partners within the project. The key aspects of their project activities include the 

development of concepts to protect the remaining populations of the bladder wrack (Fucus 
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vesiculosus) and to re-establish the bladder wrack where it is locally vanished. Detailed 

management strategies of coastal ecosystems require scientific knowledge about the impact of 

climate change on marine macrophytes in the Baltic Sea. The investigation in 2011 analysed the 

sequential stress effects of raising water temperature (thermal stress) and subsequent feeding 

pressure or a second heat wave on the survival of early post-settlement stages of F. vesiculosus 

by laboratory experiments. The study was financed by the RADOST project. 

 

3 Introduction 

 

Macrophyte communities are important habitats for many organisms in shallow coastal zones and 

basic links in marine nutrient and carbon cycles (Carr 1989, Duggins et al. 1989, Arrontes 1999, 

Worm 2000, Lotze et al. 2001, Berger et al. 2004, Wikström & Kautsky 2007). In the Baltic Sea, 

the most common canopy-forming and wide spread species is the bladder wrack Fucus 

vesiculosus (Torn et al. 2006), which has shown a massive retreat from the deeper zones of its 

former distribution and now seems to appear mainly in the shallow water zone (Vogt & Schramm 

1991, Fürhaupter et al. 2003, Torn et al. 2006). This decline is caused by loss of hard substrata 

(Karez & Schories 2005, Vogt & Schramm 1991), increased grazing pressure (Schaffelke et al. 

1995), sedimentation and eutrophication (Vogt & Schramm 1991). Although the bladder wrack 

tolerates low salinity (Torn et al. 2006) F. vesiculosus populations in the eastern parts of the 

German Baltic coast declined recently (Fürhaupter et al. 2006, Schories et al. 2006). Which 

reasons lie behind this recent decline remains unclear. One possible reason for this phenomenon 

could be the impact of climate change (BACC 2008), which represents additional threats to the 

populations of the bladder wrack. Increasing thermal stress and enhanced feeding pressure on 

adults or early life stages of F. vesiculosus could be the consequences. Among other things the 

abundance of Fucus algae is controlled by post-settlement events (Pearson & Brawley 1996, 

Johnson & Brawley 1998, Berndt et al. 2002). One example for a post-settlement event is a strong 

rise in water temperature after reproduction which could significantly reduce the germination 

success of fucoid zygotes. To assess the consequences of a single high temperature pulse on the 

survival of early bladder wrack stages laboratory experiments were performed. A follow-up 

question was, whether the surviving genotypes would exhibit a different sensitivity to a second 

stress, feeding or rather a second heat wave in this case.  

 

We first tested the hypothesis that (1) moderate thermal stress (one pulse of high temperature) 

reduces the survival of the early life stages of F. vesiculosus. We further hypothesized that (2) 
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fucoid offspring which was preselected by high temperature differs in sensitivity to feeding 

pressure or to a second heat wave from fucoid offspring without prior stress (but having 

experienced random mortality). 

 

4 Materials and methods 

4.1 Sampling  

 

Fertile tips (receptacles) from spring/summer reproducing F. vesiculosus individuals were 

collected in a water depth of 0.5-1.5 m at Bülk in June 2011 (Fig. 1). Bülk is an exposed sampling 

site in the outer Kiel Fjord (54°27.327 N, 10°11.977 E) with mainly hard substrate and a varying 

salinity between 14-19 (hourly measurements from April-December 2009 in a water depth of 0.5-

1.5 m, by a CTD logger; Star-Oddi, Reykjavik, Iceland). 

 

 

In previous studies we found out that the reaction of fucoid offspring to thermal stress is related to 

genetic effects (Maczassek 2009). In the present, the effect of thermal stress on fucoid survival as 

a potential selective agent for stress resistance was tested. To warrant genetic diversity in each 

experimental germling population, we used random mixtures of fucoid zygotes from different set of 

parents. For this purpose receptacles from 60 different F. vesiculosus individuals (4 receptacles 

per F. vesiculosus individuals; number of males and females are unknown) were collected in the 

field. Because F. vesiculosus gametes disperse 0.5-2 m from the adult plants (Serrão et al. 1997), 

a distance of 2 meters between the different fertile F. vesiculosus individuals was kept. 
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4.2 Production of the fucoid zygotes 

 

The following method to produce fucoid zygotes is based on a previous study by Karez (1997) and 

on our experience from former investigations of early fucoid life stages (Maczassek 2009). 

 

The gamete release was induced in the lab by first washing the receptacles with fresh water and 

by then keeping them dry in the dark at a constant temperature of 15°C. After 5 days fertile tips 

were transferred into 15°C seawater from the Kiel Fjord with a salinity of 16 and exposed to light 

(200 µmol m-2s-1) for a duration of 5 h. During this period gamete release and fertilisation took 

place (Fig. 2).  

 

 

 

Fucoid embryos were collected with a glass pipette and stored in a beaker glass. Homogenized 

fucoid zygotes suspension was transferred into 6-well plates (1000 µl zygote suspension/well) 

using an Eppendorf pipette. 8 ml of filtered seawater (0.2 µm membrane filter/cellulose acetate) 

from Kiel Fjord was added. Only fertilized eggs attach to the substrate (Ladah et al. 2003). To 

remove unfertilized eggs the wells were rinsed three times with filtered seawater 24 hours later.  
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4.3 Thermal stress on Fucus vesiculosus (first heat wave) 

4.3.1 Thermal treatment of early fucoid life stages 

 

Average densities of early fucoid life stages were determined by counting 7 visual fields in each 

well with an inverted microscope (10 x). Well plates with known initial germling density were 

placed into water baths of two different temperatures (25°C, 15°C) for 4 days. Both treatments 

were replicated 6 times (Fig. 3) and during the experiment water was exchanged daily. 

 

  

 

In former experiments 60-100% of early fucoid stages died after an incubation at 25°C for 5 days 

(Maczassek 2009). In the present experiment a water temperature of 25°C and an exposure time 

of four days were assumed to be sublethal but represented thermal stress for early fucoid life 

stages. In contrast, 15°C was observed as an optimal temperature for germination (Maczassek 

2009) and growth (Lüning 1985) of F. vesiculosus. Therefore, in our experiment 15°C was 

supposed to be the optimal incubation temperature for young stages of F. vesiculosus and will be 

referred to as “optimal temperature”. 

After the thermal treatment of 4 days the number of surviving fucoids (Fig. 4a) in their early life 

stages was counted. 
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4.3.2 Analyses   

 

Mortality (%) was calculated according to the formula:  

 

 

To standardize the density of germlings in the wells for the subsequent feeding experiments the 

number of germlings in the 15°C treatment were adjusted to the mean number of germlings of the 

25°C treatments by removing surplus young F. vesiculosus individuals with a forceps. In contrast 

to the other treatment group, this mechanical and random “mortality” did not select for any stress 

resistance among the Fucus genotypes. 

 

The mortality of early fucoid life stages at 25°C, compared to their mortality at 15°C (%, 

transformed with arcsine transformation) was analyzed with an One-way ANOVA (Statistica; Table 

1). The transformed data were normally distributed and homoscedasticity was found. 
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4.4 Growth of early fucoid life stages 

 

Marine isopods are known as consumers of adult F. vesiculosus (see discussion). In order to 

determine the feeding pressure on young life stages of F. vesiculosus we intended to provide an 

“attractive” biomass of the germlings (length ≥ 1 mm) for the isopods. For this reason, we 

incubated fucoid early life stages after the thermal stress experiment at a constant temperature 

(15°C) with filtered seawater (exchanged daily) and at a constant light intensity of 106 µmol m-2s-1 

(16h:8h light:dark cycle) to let them grow. 

 

4.5 Feeding pressure on Fucus vesiculosus 

 

Isopods and snails are known to be efficient grazers of young recruits of F. vesiculosus (Korpinen 

et al. 2007). In this study the isopod Idotea baltica and the snail Hydrobia ulvae were used for the 

feeding pressure experiments. 25 individuals of I. baltica (1–2 cm body length) and 30 H. ulvae (3-

5 mm shell height) were collected in a Zostera marina bed in Falckenstein, Kiel Fjord (54.40608° N 

10.194249° E) with a hand brailer while snorkelling.  

 

For the pilot study and the feeding pressure experiment (4.5.1 and 4.5.2) several of the sampled 

animals were taken randomly. 12 individuals of I. baltica and 12 individuals of H. ulvae were 

placed individually into aquariums with a salinity of 16 and a temperature of 15°C for 3 days.  

For both experiments (for every temperature treatment 6 replicates) one well was occupied with 

one isopod (pilot study) or one snail (feeding pressure experiment) per replicate and a second well 

without grazer was used as control. These treatments were exposed to a light intensity of 

100 µmol m-2s-1 (16h:8h light:dark cycle) and to filtered seawater from Kiel Fjord with a salinity of 

16 and a temperature of 15°C. Daily, water was exchanged and the density of fucoids was 

determined. 
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4.5.1 Pilot study 

 

After a recovery period of 4 months, fucoid offspring was < 1 mm (see results, Table 1). A pilot 

study was conducted to find out if the grazers feed on the germlings. To determine feeding 

pressure we estimated the initial densities of the fucoid offspring (from both treatments) before 

isopods were transferred into the wells and after termination of the experiments. After 5 days of 

observation we could not find grazing patches neither in the wells with the isopods nor in the 

controls. So we conclude that I. baltica did not consume the fucoid offspring. The same pilot study 

was done with H. ulvae. Here little grazing patches were found. We thus decided to conduct the 

feeding experiment with this snail. 

 

4.5.2 Feeding pressure experiment  

 

The initial density of young F. vesiculosus in each well was determined. Water was exchanged 

every day and controlled for early fucoid life stages. This control was necessary to ensure that the 

changing density of fucoid offspring was a result of feeding pressure and not caused by 

mechanical removal of the snail or by water change. After 2 weeks the density of residual Fucus 

offspring was counted. 

 

4.6 Thermal stress on Fucus vesiculosus (second heat wave) 

 

After a recovery period of 5 months (1 month after the feeding experiments) sensitivity of fucoid 

offspring with (25°C) and without (15°C) prior stress to a second heat wave (25°C) was tested. 

During the last 4 weeks of recovery period young F. vesiculosus was kept outside in aquaria 

(salinity: 16), were water temperature decreased. So before experiment was started a water 

temperature of 8°C (hourly measurements for 7 days) was measured. Thus 8°C was chosen as 

the control treatment. 
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First the average initial density of young Fucus was determined. Then wells were placed into water 

baths with two different temperatures (25°C, 8°C) for 2 weeks. Both treatments were replicated 6 

times and during the experiment water was exchanged daily. 

 

Fucoid offspring which died during thermal stress experiment dispersed like mentioned above 

(4.3.1; Fig. 4b). So after the thermal treatment of two weeks, the number of surviving 

F. vesiculosus individuals was counted.  

 

5 Results  

5.1 Thermal stress on Fucus vesiculosus (first heat wave) 

 

Mortality increased significantly (p = 0.000105; F = 38.05) with temperature (Fig. 5; Table 1, 2). 

After 4 days the mean mortality of early fucoid life stages was 26% (25°C) compared to 9% 

mortality (15°C). 
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5.2 Growth and feeding pressure experiment 

 

Table 3 shows the length of fucoid offspring at various times. After an incubation period of 4 

months (after the heat stress treatment) no differences in growth were observed. Early fucoid life 

stages reached a mean size of 274 µm at 15°C and 278 µm at 25°C. During the feeding pressure 

experiment with H. ulvae - in contrast to the pilot study - no grazing patches were observed and no 

difference in germling density was found (Fig. 6, Table 4; even in the controls mortality was found). 
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5.3 Thermal stress on Fucus vesiculosus (second heat wave) 

 

During the second thermal stress experiment fucoid offspring which was preselected by high 

temperature (25°C) differed not significantly in sensitivity from fucoid offspring without prior stress 

(15°C). At both, preselected and unselected fucoid offspring, mortality (45% – 50%) was 

independent from temperature (Fig. 7, Table 5). 
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6 Discussion 

6.1 Thermal stress on Fucus vesiculosus (first heat wave) 

 

The mortality of early fucoid life stages was almost three times higher at 25°C than at 15°C. This 

result is conform to our previous studies were early post-settlement stages were affected 

negatively by a temperature of 25°C (Maczassek 2009) and supports our first hypothesis that 

thermal stress has a negative effect on survival of young fucoid stages (F. vesiculosus).  

 

Lüning (1984) reported an upper survival temperature of 28°C for adult F. vesiculosus (1 week 

exposure) whereas in our experiments even 25°C had a strong negative effect on fucoid offspring. 

If this is not an inter-population difference (North Sea versus Baltic Sea), this may suggest that 

early fucoid life stages are more sensitive to heat stress than adult F. vesiculosus. Post-settlement 

processes confine the abundance of fucoid species (Brawley & Johnson 1991, Pearson & Brawley 

1996, Serrão et al. 1996, Johnson & Brawley 1998, Berndt et al. 2002). The stress treatment 

applied was not unnatural since during summer we repeatedly measured temperatures up to 25°C 

in shallow water depth where Fucus individuals occur. Furthermore it might be that an increase of 

intensity and frequency of heat waves due to climate change leads to water temperatures which 

are even higher than 25°C. So we assume that recruitment success and therefore the abundance 

of Fucus beds in shallow waters could be threatened by warm summer seasons. 
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6.2 Growth and feeding pressure on Fucus vesiculosus 

 

We hypothesized that young F. vesiculosus which is genetically preselected by high temperature, 

may be more or less sensitive to feeding pressure or a second heat wave than fucoid offspring 

without stress. During feeding pressure experiments with I. baltica no consumption of early fucoid 

life stages was observed. All previous studies about the feeding pressure on F. vesiculosus by 

isopods were performed with adult F. vesiculosus (Schaffelke et al. 1995, Karez et al. 2000, Jonne 

et al. 2006, Råberg & Kautsky 2008, Ringelhan 2008, Petrowski 2010, Roth et al. 2010, Yun et al. 

2010) and which size of F. vesiculosus germlings is preferred by I. baltica is unknown. In our study 

early fucoid life stages were still smaller than 1 mm 4 months after settlement, although fucoid 

offspring were reared under controlled conditions, like filtered seawater (no diatoms and no 

grazers), optimal temperature (15°C) and constant light intensity. So it might be that fucoid 

germlings were too small to be “attractive food” for I. baltica. Higher growth rates of Fucus 

germlings are known in nature (McLachlan et al. 1971). Although during the pilot study grazing 

patches were observed, no consumption of fucoid offspring by H. ulvae was measurable in the 

main experiment. During the pilot study water was exchanged every day, but not controlled for 

early fucoid life stages. So it could be that the grazing patches during the pilot study are caused by 

mechanical removal of the snail. 

 

The question whether genetic preselection by thermal stress affects the sensitivity of Fucus 

germlings to grazing must remain unanswered for the moment since consumption under the 

experimental conditions was nil. Whether the mortality caused by thermal stress leads to a genetic 

shift in the surviving population is analyzed at the moment. Only if such a shift happens and if 

susceptibility to grazing differs among genotypes (which is unknown so far) can we expect an 

interaction between heat-driven mortality and grazing impact. We are confident that our ongoing 

investigation will elucidate this question in the near future.  

 

6.3 Thermal stress on Fucus vesiculosus (second heat wave) 

 

Results do not confirm our hypothesis that fucoid offspring which is genetically preselected by 

thermal stress differs in sensitivity from F. vesiculosus offspring without prior stress. But nearly 

50% of fucoid recruits which were already stressed by a first heat wave survived a second heat 
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wave. This fact does not confirm our assumption that warm summer seasons could have a 

negative effect on survival of fucoid recruits. But in this case it has to be noticed that the second 

heat wave was tested on 5 months old fucoid offspring, first heat wave on 1 day old fucoid 

offspring. We already mentioned above that the upper survival temperature for adult F. 

vesiculosus is 28°C (Lüning 1984). So it could be that preselected as well as unselected fucoid 

offspring was less sensitive to second heat wave because of their higher age. Therefore further 

experiments concerning to genetically preselection should be made (see also 6.2). 

 

6.4 Outlook 

 

Besides feeding pressure and thermal stress other factors exist which could influence the 

development of fucoid recruits. Desiccation for example negatively affects early post-settlement 

stages of algae in open areas (not sheltered by parental canopy) (Brawley & Johnson 1991). 

Other environmental stressors can be low salinity, high light intensity and intensive UV radiation. 

On the biotic side, parasitism, diseases and epibiotism can be stressful at the individual and the 

population level. Especially during warm summer seasons in shallow waters UV radiation, light 

intensity and heat waves could have negative synergetic effects on survival of young fucoid 

offspring. In a newly constructed outdoor benthocosm facility (Fig. 8) the impact of multiple 

stressors on adult and young Fucus will be investigated in the coming years. 
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If a stressor through genetically differential mortality leads to a shift in genetic diversity and 

composition of a population we may expect the subsequent impacts of other stressors will be 

affected. The interactive action of multiple biotic and abiotic stress as an important ecological 

scenario to be expected in the course of climate change. 

 

The mortality of fucoid offspring which was found even in the controls (5.2, Table 4; 5.3, Table 5) 

might be caused by the long period (4 months) F. vesiculosus individuals were kept indoors 

(because of low light for example). We assume that during outdoor benthocosm experiments 

culturing of Fucus algae will be more successful than by indoors.  
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