The results of a survey of 4000 companies in the Bremen-Oldenburg metropolitan region in north-western Germany show that climate change is an ever more significant business management factor for companies. In this issue of SHORT AND SHARP, we present an overview of the risks and opportunities which various industries see ahead of them, and of the conclusions which can be drawn for adaptation strategies.
Regional climate change projections show a changing climate in the metropolitan region of Hamburg for the end of the century: The temperature could increase and the precipitation in summer could decrease. To cope with the probably longer lasting and hotter summer conditions in Europe there are different possible adaptation measures in land management practice, e.g. forest conversion. That means the conversion of mostly coniferous forest monocultures to deciduous and mixed forests. Mixed forests are generally more adaptable in comparison to conifer forests. They ensure an increased groundwater recharge because of less canopy interception and reduced transpiration outside the growing season. An interesting question is how forest conversion would feedback to the regional climate under different climate conditions. To explore climate feedbacks, REMO (regional climate model at the Max Planck Institute for Meteorology, Hamburg) is applied. To get a more realistic representation of the land surface, a current dataset from a digital basis landscape model of the Federal Agency for Cartography and Geodesy is used instead of the standard representation of the land surface in REMO. In some areas of the metropolitan region of Hamburg the updated land surface increases the forest fraction. Additionally, all coniferous forest types are converted into broadleaf forest types to study the maximum impact on the simulated near surface climate. This set-up is used for a climate simulation with REMO, forced by ERA-INTERIM reanalysis data for the period of 1990-2008. Selected climate variables are analyzed and the associated processes are investigated: The different forest distributions affect particularly the evapotranspiration and thus the water- and energy cycle of the soil and the lower atmosphere. Especially, the effects in the very hot and dry year 2003 and in the wet year 2002 are analyzed. To study the impacts of the forest distributions under different climate conditions, a second climate simulation is set up with REMO, forced by ECHAM5-MPIOM for the historical period 1970-2000 and for the future time periods 2035-2065 and 2070-2100 under A1B emissions. This allows analyzing the impact of a changed forest cover under different climate conditions. It gives a first estimation of climate sensitivity.
INKA BB sees itself as an innovation network encompassing academia and business practice that brings about change proactively. As a role model and partner, the network wishes to disseminate findings and initiate learning processes. To achieve this, we combine the region’s existing expertise of research institutions, public administrations, business enterprises and associations. The network operates in Brandenburg with a federal state-wide focus. Most site- and company-related measures are undertaken in the regions of Lausitz-Spreewald and Uckermark-Barnim, as well as in the metropolis of Berlin.
Based on concepts for innovation processes and co-production of knowledge, approaches are investigated that address the urgent and complex problems related to climate change, because especially the participation of, and close collaboration with, practice partners is needed. The paper presents the agricultural knowledge management approach in the organic agriculture module of the R&D project INKA BB (Innovation Network for Climate Change Adaptation Brandenburg Berlin) in north-eastern Germany (Knierim et al. 2009). The methodology for the science-practice collaboration follows an action research approach that supports the communication and cooperation of researchers and practitioners. The framework is the action research cycle with iterative stages of planning, action, and reflection. The organic agriculture module, which addresses individual research questions on several farms, is presented as a good practice example for close transdisciplinary network cooperation. The workshop contribution will provide reflections on the innovation development process over two project years.
Impacts of climate change on agriculture have been predominantly analyzed by using biophysical and crop specific model applications. Vulnerability assessments which identify the vulnerability of regions with their farming systems are urgently required, because agricultural adaptations to climate change are related to regional specifics, and therefore research has to consider the regional level. Therefore sector- and system-specific approaches have to be developed. This paper presents the methodology of a vulnerability assessment for organic farming systems in the Brandenburg Region, which considers regional-specific climatic impact, as well as the regional-specific adaptive capacity. In this region, the cultivation and management of legume-grass swards have a key position, especially the climate change impact on legume symbiotic nitrogen fixation and nitrogen mineralization. Adaptation strategies of crop production systems include reduced soil tillage, which plays an important role also in organic farming systems (reducing soil erosion, improving water infiltration, reducing evaporation and improving soil structure, control of N-dynamics) are developed and tested by means of an action research approach.
“Adaptation to climate change” as a new field of knowledge challenges agricultural and horticultural (vocational) education and extension. Farmers and horticulturists are confronted with vague scientific findings at best. A broad variety of global climate scenarios is “projected” onto regions and exact predictions are usually not possible. Often, personal observations and experiences seem to contradict scientific assertions. Under this condition farmers and policy makers must decide about future land use.
What does this imply for capacity building? How to transform insecurity into concrete educational measures and programs?
The authors discuss their first experiences within a German R&D network (INKA BB) in which they develop capacity building programs. Two examples from urban agriculture / urban gardening will be used as case studies. Strengths and weaknesses of the development processes and their management will be discussed.
Since the topic is complex and adaptation is a continuous activity, learning in connection with climate change adaptation ideally begins on elementary level, continues in higher and vocational training, and does not end with extension. In other words: “learning chains” must be developed which enable life-long learning in formal, non-formal and informal learning environments.
Competencies are needed beyond classical technological and economic skills. Problem solving - from problem perception, analysis, generation of alternative solutions, to implementation and evaluation - with a key competence in critical analysis and reflection of contemporary research findings - gain in importance.
In INKA BB, participation is seen as axiomatic. As a consequence, an action-oriented, participatory approach has been chosen which enables mutual learning among partners from research, formal and informal, elementary, higher and vocational education.
A crucial point is the question of “Who could be the bridge between science and the educational practitioner?” In INKA BB, a specific working group (the subproject on “Knowledge Management and Transfer”) facilitates the development processes and therefore plays a liaison role between theory and practice. In the long-run, sustainable ownership of this process must be achieved. A combination of network building, mutual learning in permanent work groups, provision of technical trainings, and joint planning, testing, monitoring and evaluation is seen as a precondition.
In order to initiate the design, communication and implementation of the transformation to a lowconflict and climate-adapted land-use system, the Centers of Competence e.V. organized three events in the context of nordwest2050 between 2010 and 2013. In cooperation with the Carl von Ossietzky University of Oldenburg, a dialogue was initiated in which heterogeneity of the issues and the various interests of the actors on the issue of land-use was discussed and a solution-oriented manner. At the second and largest event, in February 2013, the »Aurich Declaration,« a regional statement on the most important land-use problems, and concrete approaches to solutions, was adopted. It is represented and supported by a wide range of authors from the region.
Political and administrative structures play an important role in climate adaptation. Political scientific analysis can identify factors and scopes of action, which could increase the adaptive capacity. The Governance Team therefore investigated key sectors in the Metropolitan Region, including spatial planning, water management, coastal and inland flood protection,
and civil protection.
ONNO e.V., the East Frisian Network for Ecology – Region – Future, functions as a mediator between its members affected by climate change, the scientists in the project nordwest2050, and the public. The Association is especially active in the area of food communications and education, in order to strengthen the perspective of sustainable food culture in East Friesland among all relevant actors. In the context of this project, this is especially being developed and deepened with respect to the issue of climate change.