INKA BB sees itself as an innovation network encompassing academia and business practice that brings about change proactively. As a role model and partner, the network wishes to disseminate findings and initiate learning processes. To achieve this, we combine the region’s existing expertise of research institutions, public administrations, business enterprises and associations. The network operates in Brandenburg with a federal state-wide focus. Most site- and company-related measures are undertaken in the regions of Lausitz-Spreewald and Uckermark-Barnim, as well as in the metropolis of Berlin.
Based on concepts for innovation processes and co-production of knowledge, approaches are investigated that address the urgent and complex problems related to climate change, because especially the participation of, and close collaboration with, practice partners is needed. The paper presents the agricultural knowledge management approach in the organic agriculture module of the R&D project INKA BB (Innovation Network for Climate Change Adaptation Brandenburg Berlin) in north-eastern Germany (Knierim et al. 2009). The methodology for the science-practice collaboration follows an action research approach that supports the communication and cooperation of researchers and practitioners. The framework is the action research cycle with iterative stages of planning, action, and reflection. The organic agriculture module, which addresses individual research questions on several farms, is presented as a good practice example for close transdisciplinary network cooperation. The workshop contribution will provide reflections on the innovation development process over two project years.
“Adaptation to climate change” as a new field of knowledge challenges agricultural and horticultural (vocational) education and extension. Farmers and horticulturists are confronted with vague scientific findings at best. A broad variety of global climate scenarios is “projected” onto regions and exact predictions are usually not possible. Often, personal observations and experiences seem to contradict scientific assertions. Under this condition farmers and policy makers must decide about future land use.
What does this imply for capacity building? How to transform insecurity into concrete educational measures and programs?
The authors discuss their first experiences within a German R&D network (INKA BB) in which they develop capacity building programs. Two examples from urban agriculture / urban gardening will be used as case studies. Strengths and weaknesses of the development processes and their management will be discussed.
Since the topic is complex and adaptation is a continuous activity, learning in connection with climate change adaptation ideally begins on elementary level, continues in higher and vocational training, and does not end with extension. In other words: “learning chains” must be developed which enable life-long learning in formal, non-formal and informal learning environments.
Competencies are needed beyond classical technological and economic skills. Problem solving - from problem perception, analysis, generation of alternative solutions, to implementation and evaluation - with a key competence in critical analysis and reflection of contemporary research findings - gain in importance.
In INKA BB, participation is seen as axiomatic. As a consequence, an action-oriented, participatory approach has been chosen which enables mutual learning among partners from research, formal and informal, elementary, higher and vocational education.
A crucial point is the question of “Who could be the bridge between science and the educational practitioner?” In INKA BB, a specific working group (the subproject on “Knowledge Management and Transfer”) facilitates the development processes and therefore plays a liaison role between theory and practice. In the long-run, sustainable ownership of this process must be achieved. A combination of network building, mutual learning in permanent work groups, provision of technical trainings, and joint planning, testing, monitoring and evaluation is seen as a precondition.
The Northwest of Germany is characterized by lively and modern cities and a rough landscape of coastal wetlands and moors. The flat land in the Northwest has long become a centre of logistics and harbor industry, of food production, and expertise in aerospace, energy and environmental technology. The region is one of Germany’s most dynamic industrial locations. nordwest2050 focuses on the Metropolitan Region Bremen-Oldenburg in the Northwest of Germany, a region with more than 2.3 million inhabitants