This work deal with a comparison between the common
"bathtub method" and a state-of-the-art hydrodynamic model, called MIKE21 HD Flow Model, for modelling storm surges. The aim of this study is to work out the differences between both approaches and to find out how probable differences look like. There is the question if the "bathtub method" represents flooding adequate or, if the consideration of physics by hydrodynamic models makes a major difference and displays maybe the "real" risk of
inundations. This work tries to underline the differences between those two approaches, where the strengths and weaknesses are and what influence those differences have for an inundation analysis. The investigation was made on a digital elevation model for the study area of Kiel, the capital city of the state Schleswig-Holstein in Germany. The two approaches were made on data for a small storm surge on the basis of water-level-change and wind-regime data from 2010.
Proceeding of the 12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011.
For the development of adaptation strategies in the research project dynaklim (Dynamic Adaptation of Regional Planning and Development Processes to the Effects of Climate Change in the Emscher-Lippe-Region) numerous models (e. g. sewer models) which need rainfall data as input are used. These models need data with a temporal and spatial resolution beyond the resolution provided by regional climate models. Therefore downscaling of the
precipitation data is performed with the help of weather radar data. Comparisons of measurement and model data during 1961-1990 show systematic bias and differing statistical characteristics between the two data types; thus the model data requires preliminary correction before use. A critical point is the corrections´ impact on extreme event data that are applied in extreme value statistics for structure design, e.g. for retention basins. Different characteristics of the analysed rainfall data and correction procedures are described.
The vulnerability analysis of the food industry in the Metropolitan Region Bremen-Oldenburg is based on an examination of the supply chains of the poultry, pork, dairy and fish industries.
Information about possible changes of extreme wave heights are essential for the future safe design of coastal and flood protection structures likes dykes, flood protection dunes, revetments etc. In this study, scenarios of regional climate change up to 2100 are used for the evaluation of changes of wave conditions. Analyses on calculated significant wave heights derived from extreme value statistics are showing a different signal of change for the selected locations along the German Baltic Sea Coast. The results are showing that extreme wave heights with a return level of 200 years can increase up to +14%. But also a decrease of down to -14% were found compared to actual conditions, depending on the location and climate change scenario applied. At the location of Warnemünde a slight increasing trend for the change of extreme wave heights could be found for 3 of 4 scenario runs with a maximum increase of +7%.
One of the important parts of the final conference of ‘nordwest2050’ has been the scientific exchange sessions in the House of Science and the Industryclub Bremen. Contributions were based upon a call for papers from October 2013. The scientific committee received almost 100 abstracts where 36 were chosen for oral presentations and 15 for poster presentations (see overview tables below).
Four main topics were discussed in parallel workshops:
• Analysing Impacts and Assessing Vulnerabilities
• Designing and Testing Solutions for Regional Climate Adaptation and Resilience
• Implementing Climate Adaptation and Paths to a Resilient Future
• Resilience for Business: Climate Adaptation Challenge and Strategies of Sectors and Companies