Der Bericht "Wasserhaushalt für projizierte Klimaszenarien" repräsentiert das REGKLAM-Produkt 3.2.1a. Er umfasst die Ermittlung des Wasserhaushaltes für projizierte Klimaszenarien in einem ausgewählten Talsperreneinzugsgebiet. Dafür wurde im Rahmen dieses Produktberichtes auf die „klassische“ hydrologische Modellierung nach aktuellem Stand der Technik eingegangen. Die sich ergebenden Projektionen des Wasserhaushaltes wurden mit dem rezent beobachteten Wasserhaushalt verglichen und signifikante Änderungssignale von einzelnen Wasserhaushaltsgrößen identifiziert. Zusätzlich wurden Unsicherheiten der hydrologischen Modellierung betrachtet.
Der Bericht "Auswirkungen des Klimawandels auf die Emission aus Kanalnetzen - Strategien zur Verringerung der Frachtspitzen" repräsentiert das REGKLAM-Produkt 3.2.4c. Im Betrieb von Kanalisation und Kläranlagen sind sowohl das häufigere Auftreten von Starkniederschlägen als auch die Tendenz zu längeren Trockenperioden von großer Bedeutung. Bei langen Trockenperioden ist grundsätzlich von einer höheren Stoffakkumulation an der Oberfläche und verstärkter Bildung von Kanalsedimenten auszugehen. Dieser Bericht widmet sich den Schmutzfrachtprozessen im urbanen Entwässerungssystem. Es werden kritische Belastungen identifiziert und mit den verursachenden meteorologischen Einflussfaktoren korreliert.
Dies ist ein Poster aus dem REGKLAM-Vorhaben zum Thema "Projizierte Trockenheitstrends - Bewertung regionaler Trockenheitstrends anhand eines Ensembles globaler und regionaler Klimamodelle".
Abstract
Water management and environmental protection is vulnerable to extreme low flows during streamflow droughts. During the last decades, in most rivers of Central Europe summer runoff and low flows have decreased. Discharge projections agree that future decrease in runoff is likely for catchments in Brandenburg, Germany. Depending on the first-order controls on low flows, different adaption measures are expected to be appropriate. Small catchments were analyzed because they are expected to be more vulnerable to a changing climate than larger rivers. They are mainly headwater catchments with smaller ground water storage. Local characteristics are more important at this scale and can increase vulnerability.
This thesis mutually evaluates potential adaption measures to sustain minimum runoff in small catchments of Brandenburg, Germany, and similarities of these catchments regarding low flows. The following guiding questions are addressed: (i) Which first-order controls on low flows and related time scales exist? (ii) Which are the differences between small catchments regarding low flow vulnerability? (iii) Which adaption measures to sustain minimum runoff in small catchments of Brandenburg are appropriate considering regional low flow patterns?
Potential adaption measures to sustain minimum runoff during periods of low flows can be classified into three categories: (i) increase of groundwater recharge and subsequent baseflow by land use change, land management and artificial ground water recharge, (ii) increase of water storage with regulated outflow by reservoirs, lakes and wetland water management and (iii) regional low flow patterns have to be considered during planning of measures with multiple purposes (urban water management, waste water recycling and inter-basin water transfer). The question remained whether water management of areas with shallow groundwater tables can efficiently sustain minimum runoff. Exemplary, water management scenarios of a ditch irrigated area were evaluated using the model Hydrus-2D. Increasing antecedent water levels and stopping ditch irrigation during periods of low flows increased fluxes from the pasture to the stream, but storage was depleted faster during the summer months due to higher evapotranspiration. Fluxes from this approx. 1 km long pasture with an area of approx. 13 ha ranged from 0.3 to 0.7 ls-1 depending on scenario. This demonstrates that numerous of such small decentralized measures are necessary to sustain minimum runoff in meso-scale catchments.
Differences in the low flow risk of catchments and meteorological low flow predictors were analyzed. A principal component analysis was applied on daily discharge of 37 catchments between 1991 and 2006. Flows decreased more in Southeast Brandenburg according to meteorological forcing. Low flow risk was highest in a region east of Berlin because of intersection of a more continental climate and the specific geohydrology. In these catchments, flows decreased faster during summer and the low flow period was prolonged. A non-linear support vector machine regression was applied to iteratively select meteorological predictors for annual 30-day minimum runoff in 16 catchments between 1965 and 2006. The potential evapotranspiration sum of the previous 48 months was the most important predictor (r2 = 0.28). The potential evapotranspiration of the previous 3 months and the precipitation of the previous 3 months and last year increased model performance (r2 = 0.49, including all four predictors). Model performance was higher for catchments with low yield and more damped runoff. In catchments with high low flow risk, explanatory power of long term potential evapotranspiration was high.
Catchments with a high low flow risk as well as catchments with a considerable decrease in flows in southeast Brandenburg have the highest demand for adaption. Measures increasing groundwater recharge are to be preferred. Catchments with high low flow risk showed relatively deep and decreasing groundwater heads allowing increased groundwater recharge at recharge areas with higher altitude away from the streams. Low flows are expected to stay low or decrease even further because long term potential evapotranspiration was the most important low flow predictor and is projected to increase during climate change. Differences in low flow risk and runoff dynamics between catchments have to be considered for management and planning of measures which do not only have the task to sustain minimum runoff.
Für das Trinkwassergewinnungsgebiet Üfter Mark im nordwestlichen Münsterland wurden mit Hilfe des Modells CANDY der Stoffaustrag sowie der Bodenwasserhaushalt unter landwirtschaftlichen Nutzflächen unter Klimawandelbedingungen modelliert. Am Beispiel einzelner Referenzflächen, für die Messwerte zum Stoffumsatz im Boden vorlagen, wurde das Modell an die standörtlichen Bedingungen angepasst. Die Modellläufe für verschiedene Fruchtfolgen und Standortbedingungen zeigten, dass - bei gleichbleibender Bewirtschaftung - allein durch die projizierten veränderten klimatischen Bedingungen ein erhöhter N-Austrag lediglich in Böden mit erhöhten Humusgehalten zu erwarten ist. Ein deutlicher Einfluss des Klimawandels auf erhöhte Bewässerungsansprüche (ca. 100 - 150 mm/a) in der Fernen Zukunft (2071 - 2100) zeichnete sich hingegen in allen betrachteten Fruchtfolgen und Standorttypen ab. Die tatsächliche Entwicklung der landwirtschaftlichen Flächennutzung für die nächsten Jahrzehnte lässt sich auf Grund der vielfältigen Einflussfaktoren und ihrer komplexen Wechselwirkungen nicht belastbar prognostizieren. Die Untersuchungsergebnisse haben jedoch gezeigt, dass durch den Einsatz eines DV-Systems wie CANDY zur Modellierung des Stoff- und Wasserhaushaltes eines Bodens - nach entsprechender Anpassung der Modellparameter an das Untersuchungsgebiet - bei sich abzeichnenden Änderungen der Bewirtschaftung deren Konsequenzen für den Stoffaustrag bzw. den Bodenwasserhaushalt modelliert werden. Durch Variierung der Bewirtschaftungsmaßnahmen kann der Modelleinsatz in der Folge die Entwicklung grundwasserschonende Flächennutzungsverfahren unterstützen.
Am Beispiel des Wassergewinnungsgebiets Üfter Mark werden die Auswirkungen des Klimawandels auf den Wasserhaushalt in der Projektregion „Emscher-Lippe“ untersucht. Langfristige Trends in der Quantität und Qualität von Wasserressourcen werden modellbasiert erfasst und hinsichtlich ihres Gefährdungspotenzials bewertet. Hierbei zeigt sich v.a. ein in der Zukunft steigender Beregnungsbedarf landwirtschaftlicher Nutzflächen als wesentlicher Schlüsselfaktor. Das für die Beregnung genutzte Grundwasser stellt neben der Düngung und der atmosphärischen Deposition eine zusätzliche Eintragsquelle u.a. für Nitrat, Sulfat und Chlorid dar. Insbesondere die Nutzung oberflächennaher Grundwässer für die Beregnung führt somit zu einem schrittweisen Anstieg der Stoffbelastung im Grund- und Rohwasser. So kann für landwirtschaftlich relevante Parameter wie Nitrat diese zusätzliche Belastungsquelle reduziert werden, wenn die mit dem Beregnungswasser ausgebrachten N-Frachten bei der N-Düngung berücksichtigt werden. Anhand von Prognoseszenarien wird für die Förderbrunnen differenziert untersucht, welchen Effekt ein infolge des Klimawandels veränderter Stofffluss auf die Entwicklung der Rohwasserbeschaffenheit hat. So zeigt sich v.a. in den westlich gelegenen Förderbrunnen eine hohe Sensibilität gegenüber Veränderungen im Stoffaustrag aus der Bodenzone. Eine Beeinflussung der Rohwasserqualität in den östlichen Förderbrunnen ist dahingegen stark zeitlich verzögert.