Die Phänologie beschreibt die im Jahresverlauf periodisch wiederkehrenden Wachstums- und Entwicklungserscheinungen von Pflanzen und Tieren. In dieser Studie wird die Phänologie von Pflanzen betrachtet. Der jährliche Vegetationszyklus wird durch den Jahresgang mas bestimmt. Die engen Wechselbeziehungen machen die Pflanzenphänologie zu einem Indikator für Klimaänderungen. Das Ziel der vorliegenden Studie ist die Analyse phänologischer Zeitreihen für die Metropolregion Hamburg, die der Deutsche Wetterdienst (DWD) für phänologische Stationen in der Region für den Zeitraum seit 1951 archiviert und bereitstellt. Es soll untersucht werden, ob und in welcher Größenordnung eine Verschiebung der phänologischen Jahreszeiten als Indikator für die Erwärmung in den letzten Jahrzehnten stattfindet. Die Ergebnisse basieren im Wesentlichen auf der Praktikumsarbeit von M. Dröse, die im Sommer 2013 am Climate Service Center in Hamburg und im Rahmen des KLIMZUG-NORD Projekts durchgeführt wurde. In dieser Zusammenfassung sollen schwerpunktmäßig die Ergebnisse der Stationen Boizenburg im Osten sowie Büchen und Uelzen im Südosten der Metropolregion Hamburg vorgestellt werden.
Die Ergebnisse der Experimente Waldumbau und Beregnung zeigen Rückwirkungen von möglichen Anpassungsmaßnahmen in der Landbewirtschaftung auf das Klima, welche unter bestimmten Bedingungen in Boden und Atmosphäre die durch veränderte Treibhausgasemissionen bewirkte Klimaänderungen bis zu einem bestimmten Maß lokal verstärken oder abschwächen können. Diese Wechselwirkungen zwischen Klima- und Landnutzungsänderungen sind bei der Erarbeitung von Anpassungsstrategien in Land- und Forstwirtschaft zu berücksichtigen und sollten zudem sowohl empirisch als auch in der Theorie mithilfe von Klimamodellen weiter erforscht werden, damit deren Quantifizierung in die Bewertung der Anpassungsmaßnahmen einfließen kann. Bei der Entwicklung von Waldbaustrategien sind weitere Aspekte zu berücksichtigen, wie z. B. die Ausbreitung von Schädlingen und die Anfälligkeit der Baumarten unter zukünftigen Klimabedingungen.
Für das Modellgebiet der Lüneburger Heide werden zur Mitte des 21. Jahrhunderts für alle Jahreszeiten höhere Mitteltemperaturen projiziert. Zum Ende des 21. Jahrhunderts sind noch größere Temperaturzunahmen zu erwarten. Im Winter steigen die Temperaturen jeweils am stärksten, im Frühjahr am geringsten. Dabei nehmen im Winter die niedrigen Tagesmitteltemperaturen stärker zu als die höheren und Eis- und Frosttage treten deutlich seltener auf. Im Sommer können Tage mit extremen Temperaturen wie Hitzetage und Tropentage bzw. -nächte deutlich häufiger auftreten. Im Jahr nimmt die Anzahl der Tage mit Temperaturen höher als 5° C deutlich zu, was eine wichtige physiologische Schwelle für das Wachstum von Pflanzen ist. Im Verlauf des Jahrhunderts unterscheiden sich die für das B1 Szenario simulierten Temperaturen immer deutlicher von den Ergebnissen für die A1B und A2 Szenarien. Das bedeutet, wenn es gelingt, die Treibhausgasemissionen zu vermindern, deutlich geringere Klimaänderungen zu erwarten sind. Die projizierten Niederschläge nehmen 2036-2065 in allen Jahreszeiten für alle Szenarien leicht zu, mit Ausnahme abnehmender Niederschläge für das A1B Szenario im Sommer. Insgesamt sind die Veränderungen im Sommer sehr gering und zeigen keinen klaren Trend. Zum Ende des 21. Jahrhunderts dagegen zeigen die meisten Simulationen im Sommer eine Niederschlagsabnahme mit den stärksten Änderungen im A1B Szenario. In Winter und Herbst verstärkt sich die Niederschlagszunahme, sodass eine Umverteilung der Niederschläge im Jahresverlauf stattfindet mit insgesamt im Jahresmittel leicht steigenden Werten. Zudem zeigt sich im Sommer trotz abnehmender Niederschläge eine Zunahme der Intensität von starken Niederschlägen.
Die globalen Klimaänderungen wirken sich regional auf Hamburg aus. Bis Mitte des 21. Jahrhunderts muss sich die Metropole auf steigende Temperaturen einstellen, das bedeutet ca. 1 K bis 3 K höhere Temperaturen im Winter und ca. 1 K bis 1,5 K im Sommer. Der Temperaturanstieg hängt bis zur Mitte des 21. Jahrhunderts nur geringfügig davon ab, wie hoch die Menge an Treibhausgasen ist, die global ausgestoßen wird. Ab Mitte des 21. Jahrhunderts wird ein deutlicher Unterschied zwischen den Szenarien mit vergleichsweise hohen Treibhausgasemissionen (A1B und A2) und dem Szenario mit vergleichsweise niedrigen Treibhausgasemissionen (B1) erkennbar. Je mehr Treibhausgase ausgestoßen werden, desto höher ist der zu erwartende Temperaturanstieg. Dementsprechend steigt die Anzahl von Sommer- und Hitzetagen künftig an. Dies wird sehr wahrscheinlich tagsüber zu einer erhöhten Hitzebelastung für die Hamburger Bevölkerung führen. Auch die Anzahl der Tropennächte wird steigen, bleibt aber absolut betrachtet mit ein bis vier Tagen pro Jahr auch in Zukunft gering. Des Weiteren muss sich Hamburg in Zukunft auf zunehmende Niederschlagsmengen einstellen. Einzige Ausnahme ist der Sommer, für den zeigen gegen Ende des 21. Jahrhunderts die meisten Simulationen eine Abnahme der Niederschlagsmengen. Einher geht dies mit einer Zunahme der Häufigkeit von Starkniederschlagen. In allen anderen Jahreszeiten nimmt sowohl die Niederschlagsmenge als auch die Häufigkeit von Starkniederschlagen zu. Beim Niederschlag ist – im Gegensatz zur Temperatur – der Einfluss der global ausgestoßenen Treibhausgasmenge deutlich geringer, der Einfluss der natürlichen Variabilität des Klimas jedoch deutlich höher.
Die Ergebnisse der Experimente Feldberegnung und Waldumbau zeigen Rückwirkungen von möglichen Anpassungsmaßnahmen in der Landbewirtschaftung auf das Klima: Beregnung und Waldumbau bewirken in warmen und trockenen Sommern eine leichte Kühlung der Umgebung. Waldumbau kann zudem einer erhöhten Speicherung von Bodenwasser im Frühjahr und damit zu mehr Bodenwasserverfügbarkeit im Sommer an geeigneten Standorten beitragen. Unter bestimmten Bedingungen in Boden und Atmosphäre können die Rückwirkungen durch Anpassungsmaßnahmen die durch veränderte Treibhausgasemissionen bewirkte Klimaänderungen bis zu einem bestimmten Maß lokal verstärken oder abschwächen. Diese Wechselwirkungen zwischen Klima und Landnutzungsänderungen sind bei der Erarbeitung von Anpassungsstrategien in Land- und Forstwirtschaft zu berücksichtigen.
Die durchschnittliche Jahresmitteltemperatur nimmt zur Mitte des Jahrhunderts um 0,9 K bis 2 K zu (und zum Ende des Jahrhunderts um 1,9 K bis 3,3 K), jeweils mit stärkstem Anstieg im Winter (eine Änderung von 1 K entspricht einer Änderung um 1 °C). Tage mit sehr hohen Temperaturen treten deutlich häufiger auf und führen zur größeren Hitzebelastung im Sommer. Der durchschnittliche Jahresniederschlag nimmt im Verlauf des 21. Jahrhunderts zu, dabei treten die stärksten Zunahmen im Herbst und im Winter auf.· Im Sommer dagegen zeigen zur Mitte des 21. Jahrhunderts die Simulationen für das A1B Szenario abnehmende Niederschläge, zum Ende des Jahrhunderts fast alle Simulationen. Zudem zeigt sich im Sommer trotz im Mittel abnehmender Niederschlagsmengen eine Zunahme der Intensität von starken Niederschlägen. Eine Verminderung der globalen Treibhausgasemissionen führt zu deutlich geringeren Klimaänderungen.
Vorstellung von Projektergebnissen aus KLIMZUG-NORD bezüglich jährliche und saisonale Temperatur- und Niederschlagsänderungen zur Mitte und Ende des 21. Jahrhunderts, sowie Ergebnisse aus dem Projekt Hamburg 2K. In Hamburg 2K wird analysiert, was eine Begrenzung auf eine Temperaturänderung von 2K für Hamburg bedeutet. Ausgewertet wurden Temperatur- und Niederschlagsänderungen sowie ausgewählte Indices.
Regional climate change projections show a changing climate in the metropolitan region of Hamburg for the end of the century: The temperature could increase and the precipitation in summer could decrease. To cope with the probably longer lasting and hotter summer conditions in Europe there are different possible adaptation measures in land management practice, e.g. forest conversion. That means the conversion of mostly coniferous forest monocultures to deciduous and mixed forests. Mixed forests are generally more adaptable in comparison to conifer forests. They ensure an increased groundwater recharge because of less canopy interception and reduced transpiration outside the growing season. An interesting question is how forest conversion would feedback to the regional climate under different climate conditions. To explore climate feedbacks, REMO (regional climate model at the Max Planck Institute for Meteorology, Hamburg) is applied. To get a more realistic representation of the land surface, a current dataset from a digital basis landscape model of the Federal Agency for Cartography and Geodesy is used instead of the standard representation of the land surface in REMO. In some areas of the metropolitan region of Hamburg the updated land surface increases the forest fraction. Additionally, all coniferous forest types are converted into broadleaf forest types to study the maximum impact on the simulated near surface climate. This set-up is used for a climate simulation with REMO, forced by ERA-INTERIM reanalysis data for the period of 1990-2008. Selected climate variables are analyzed and the associated processes are investigated: The different forest distributions affect particularly the evapotranspiration and thus the water- and energy cycle of the soil and the lower atmosphere. Especially, the effects in the very hot and dry year 2003 and in the wet year 2002 are analyzed. To study the impacts of the forest distributions under different climate conditions, a second climate simulation is set up with REMO, forced by ECHAM5-MPIOM for the historical period 1970-2000 and for the future time periods 2035-2065 and 2070-2100 under A1B emissions. This allows analyzing the impact of a changed forest cover under different climate conditions. It gives a first estimation of climate sensitivity.
Was für Rückwirkungen haben Anpassungsmaßnahmen an den Klimawandel in der Metropolregion Hamburg, wie z.B. Bewässerung oder eine geänderte Landnutzung? Welche Veränderungen sind in den oberflächennahen Parametern wie der Temperatur und Verdunstung zu sehen? Im Rahmen der vorliegenden Diplomarbeit wurden mit dem regionalen Klimamodell REMO Studien zur Bewässerung in die südöstlichen Landkreise der MRH und der aktuellen Landnutzung in der gesamten MRH durchgeführt. Die Auswirkungen, die diese Veränderungen im simulierten regionalen und lokalen Klima haben, wurden analysiert und diskutiert. Dabei steht der europäische Hitzesommer 2003 im Vordergrund der Untersuchungen, da Klimamodelle projizieren, dass gegen Ende des 21. Jahrhunderts etwa jeder zweite Sommer ebenso heiß und trocken werden kann.