The Freese Organic Farm is testing a number of adaptation options for agriculture, especially in the area of the cultivation of cereals and of high-quality vegetables. Open-field crop farming is becoming ever more difficult due to climate change. In order to better protect vegetable cultures from such extreme weather events as heat waves or heavy rain, the Freese Organic Farm is testing the following innovations: (1) A new greenhouse covering which, due to its particular permittivity, makes open-field-like light conditions possible in a protected structure. At the same time the farm is seeking resilient, climate adapted vegetable strains which are to be examined for their particular properties, both in open-field cultivation and under the protection of this innovative foil. (2) In the area of cereal raising, the organic farm is trying to cultivate an old strain of rye. (3) And by baking and marketing bread from this rye, the farm wants to raise consciousness about the issue of climate change and adaptation.
Over the last decades, Fucus vesiculosus, an ecologically important macroalga in the German Baltic Sea, has shown a massive retreat from the deeper zones of its former distribution presumably due to low light co-acting with other potential stressors such as high temperature, fouling, and grazing. Global warming may increase abiotic as well as biotic pressures and exacerbate environmental conditions in coastal ecosystems. The present study focussed on the effects of single or subsequently combined stressors on survival and palatability of juvenile F. vesiculosus. Fucoid offspring were exposed to high temperature and/ or feeding pressure. Feeding preference of Idotea baltica was quantified in a pellet assay calculated as an odds ratio. High temperature significantly impaired the survival of juvenile fucoids. Neither single nor combined stress considerably influenced the feeding preference of I. baltica. Surprisingly I. baltica strictly avoided pellets with juvenile F. vesiculosus compared to adult F. vesiculosus. Avoidance tended to be less pronounced in juvenile fucoids previously stressed by high temperature. Obviously grazing does not induce anti-herbivore defence, but rather the young plants appeared constitutively well-protected against isopod feeding. These results contradict the prevailing opinion that juvenile F. vesiculosus is more susceptible to herbivore grazing than adult F. vesiculosus.
Regional climate change projections show a changing climate in the metropolitan region of Hamburg for the end of the century: The temperature could increase and the precipitation in summer could decrease. To cope with the probably longer lasting and hotter summer conditions in Europe there are different possible adaptation measures in land management practice, e.g. forest conversion. That means the conversion of mostly coniferous forest monocultures to deciduous and mixed forests. Mixed forests are generally more adaptable in comparison to conifer forests. They ensure an increased groundwater recharge because of less canopy interception and reduced transpiration outside the growing season. An interesting question is how forest conversion would feedback to the regional climate under different climate conditions. To explore climate feedbacks, REMO (regional climate model at the Max Planck Institute for Meteorology, Hamburg) is applied. To get a more realistic representation of the land surface, a current dataset from a digital basis landscape model of the Federal Agency for Cartography and Geodesy is used instead of the standard representation of the land surface in REMO. In some areas of the metropolitan region of Hamburg the updated land surface increases the forest fraction. Additionally, all coniferous forest types are converted into broadleaf forest types to study the maximum impact on the simulated near surface climate. This set-up is used for a climate simulation with REMO, forced by ERA-INTERIM reanalysis data for the period of 1990-2008. Selected climate variables are analyzed and the associated processes are investigated: The different forest distributions affect particularly the evapotranspiration and thus the water- and energy cycle of the soil and the lower atmosphere. Especially, the effects in the very hot and dry year 2003 and in the wet year 2002 are analyzed. To study the impacts of the forest distributions under different climate conditions, a second climate simulation is set up with REMO, forced by ECHAM5-MPIOM for the historical period 1970-2000 and for the future time periods 2035-2065 and 2070-2100 under A1B emissions. This allows analyzing the impact of a changed forest cover under different climate conditions. It gives a first estimation of climate sensitivity.
The farm Moorgut Kartzfehn in Bösel/Kartzfehn is the largest independent turkey-raising operation in Europe, and at the same time has Germany’s largest research site for turkeys. Since turkeys, like all birds, cannot sweat, the predicted long and hot summer days are a risk, especially for the final stage of turkey-farming. In order to avoid heat stress for the animals, various ventilation and feeding concepts have been developed in the context of nordwest2050.
The company Colocation IX GmbH is building a new data center in Bremen, and has decided upon the use of a new innovative cooling technology: Instead of traditional air conditioning to remove the waste heat from the servers, integral wells and geothermal probes are to provide energy-effi cient cooling in summer and heating energy for use in winter. The company is working together with the University of Bremen and the company Geo-En GmbH, which has expertise in integral wells. These alternatives to electrically driven compressor cooling will protect the environment through energy savings, help relieve the power grids, and at the same time ensure a decentralized and fail-safe cooling supply. The project has been funded by the Federal Ministry of Education and Research to the tune of €280,000. The co-payment share for ColocationIX GmbH amounts to €315,000.
A reestablishment of Fucus vesiculosus where it is locally vanished would be an indicator for improved water quality. Thus the Agency for Agriculture, Environment and Rural Areas of Schleswig - Holstein (LLUR) is thinking about opportunities to resettle F. vesiculosus. On behalf of RADOST project, the tolerance of early fucoid life stages towards thermal stress was analysed and after four days of thermal treatment a high percentage of the treated fucoid offspring survived. It might be that inside species genotypes exist which are less sensitive against future environmental changes.
Over the last decades, Fucus vesiculosus, an ecologically important macroalga in the German Baltic Sea, has shown a massive retreat from the deeper zones of its former distribution presumably due to low light co-acting with other potential stressors such as high temperature, fouling, and grazing. In shallow water F. vesiculosus may be exposed to high water temperatures during summer seasons. Intensity and frequency of heat waves are expected to increase due to climate change which could potentially affect all fucoid life stages. Early life stage processes (fertilization, germination) are often considered particularly sensitive to stress. If the mortality caused by a first heat wave in a genetically diverse population selects for stress resistance, we would expect the survivors to be less sensitive to a second heat wave or possibly even to other stressors like feeding pressure.
In the present study, the mortality of early post-settlement stages of F. vesiculosus under thermal stress and the sensitivity of survived recruits against a proximate stressor (feeding pressure, second heat wave) were analysed by laboratory experiments. The mortality of early fucoid life stages at 25°C, compared to their mortality at 15°C was significantly higher. Regrettably, the ensuing assessment of feeding impact by Idotea baltica and Hydrobia ulvae on the surviving germlings could not be analysed since the two consumer species unexpectedly avoided feeding on the young stages of F. vesiculosus. During the second thermal stress experiment fucoid offspring which was genetically preselected by high temperature (first heat wave: 25°C) differed not significantly in sensitivity from fucoid offspring without prior stress.